Delist.ru

Исследование деления ядер урана и плутония при низких энергиях возбуждения (20.08.2007)

Автор: Рябов Юрий Васильевич

3. Измерение методом времени пролета парциальных сечений (деление и радиационный захват) урана-235 и плутония-239 в энергетической области от тепловых нейтронов до 100 кэВ.

4. Анализ этих сечений реакции (сумма сечений деления и радиационного захвата), а также самих парциальных сечений, который позволил получать конкретную физическую информацию.

5. Получение полного набора параметров уровней урана-235 (область энергий 1-50 эВ) и плутония-239 (5-150 эВ).

6. Исследование корреляционной зависимости между различными параметрами уровней с целью определения связей выходных каналов распада составного ядра.

7. Исследование распределения энергии над наинизшим барьером деления и энергией связи нейтрона в составном ядре и связи с каналами в седловой точке путем измерения возбуждения осколков деления (возбужденные осколки испаряют нейтроны, и число вторичных нейтронов является критерием возбуждения).

8. Проведение дополнительных исследований с использованием других методов (две методики) регистрации мгновенных нейтронов деления для тех же ядер-мишеней на TOF-спектрометре с высоким временным (энергетическим) разрешением в CEN Сакле (Франция).

9. Исследования процесса деления после испускания ?-кванта (или квантов) с изменением четности и делением через каналы, лежащие ниже по энергии и подходящие по спину и четности, предсказанного теоретическими расчетами Линна.

10. Разработка и сооружение в течение последних 3-4 лет времяпролетного спектрометра, названного ТРОНС (Троицкий Нейтронный Спектрометр), на основе модернизированной ловушки протонного пучка линейного протонного ускорителя ММФ ИЯИ РАН.

Научная новизна и практическая ценность работы.

В работе получены следующие новые результаты.

Впервые проводились систематические исследования процесса деления ядер вблизи вершины барьера деления (при возбуждениях, близких энергии связи нуклона в составном ядре), которые позволяют изучать переходные состояния в модели О.Бора, соответствующие состояниям с различными квантовыми характеристиками (J, ?, K)

Основным методом исследований являлся метод времени пролета с использованием импульсных источников нейтронов на основе импульсного реактора периодического действия ЛНФ ОИЯИ (ИБР и ИБР в режиме бустера с электронным ускорителем), а также импульсного нейтронного источника на основе электронного линейного ускорителя CEN Saclay (Франция).

Впервые в нашей стране была разработана методика, включая программное обеспечение, комплексного получения параметров делящихся ядер из измерений сечений деления, радиационного захвата (их суммы - сечения поглощения) и пропускания в «хорошей» геометрии (сечение поглощения + сечения резонансного и потенциального рассеяния), самоиндикации, что позволило уточнить известные данные о параметрах уровней урана-235 и плутония-239, а также существенно расширить число исследованных уровней.

Впервые был получен полный набор параметров для большого числа уровней составных ядер U-236 и Pu-240 и ограниченный - для U-234.

Исследована корреляционная зависимость между различными параметрами уровней с целью определения связей выходных каналов распада составного ядра.

Впервые проведены измерения возбуждения осколков деления урана-235 и плутония-239 в резонансных состояниях, образованных при взаимодействии с S-нейтронами.

Впервые была создана система детектирования мгновенных нейтронов деления с новой специализированной электроникой, одновременной регистрацией эффекта и фона, с системой кодирования экспериментальной информации и передачи в Измерительный центр ЛНФ на 20-разрядный регистратор с памятью на магнитной ленте и специализированный комплекс накопления, хранения экспериментальной информации, контроля за ходом эксперимента и предварительной обработки данных с использованием «малой» вычислительной машины с визуальным каналом связи в виде осциллографа со световым карандашом и «большой» вычислительной машины ЛВТА ОИЯИ для обработки полученной экспериментальной информации

В измерениях среднего числа мгновенных нейтронов деления для нейтронных резонансов урана-235 и плутония-239 с разными спинами впервые была обнаружена, по-видимому, глубокая связь между двумя последовательными стадиями процесса деления: переходными состояниями ядра при критической деформации, с одной стороны, и моментом разделения на два осколка и их разлетом, с другой.

Впервые полученные средние значения по резонансной области энергий взаимодействующих нейтронов (S-взаимодействие) числа мгновенных нейтронов на акт деления для урана-235 и плутония-239 представляют значительный интерес и для прикладных работ по расчетам энергетических реакторов с большой активной зоной, где вклад надтепловых нейтронов в общем спектре, увеличивается, а, значит, необходимо иметь более точную информацию о характеристиках взаимодействия надтепловых нейтронов с делящимися ядрами.

Разработаны экспериментальные методики поиска (n,?f)-реакции при делении ядер в резонансной области энергий взаимодействующих нейтронов, связанной с перераспределением энергии в пределах энергетической щели.

Впервые проведен цикл исследований по обнаружению (n,?f)-реакции на ядрах-мишенях урана-235 и плутония-239 в резонансной области энергий взаимодействующих нейтронов на TOF-спектрометрах ЛНФ ОИЯИ (Дубна) и CEN Saclay (Франция).

Разработан и сооружен в течение последних 3-4 лет нейтронный времяпролетный спектрометр, названный ТРОНС (Троицкий Нейтронный Спектрометр), на основе модернизированной ловушки протонного пучка линейного ускорителя ММФ ИЯИ РАН – первый импульсный источник нейтронов на протонном пучке средних энергий в нашей стране.

Положения, выносимые на защиту.

На защиту выносятся результаты экспериментальных исследований:

1. парциальных сечений урана-235 и плутония-239 нейтронами резонансных и промежуточных энергий, анализа сечений с целью получения значений силовых функций для S- и Р-нейтронов и определения влияния структуры уровней второй потенциальной ямы на квазипериодические вариации в ходе сечений деления, что позволяет оценить плотность уровней второго типа (во второй потенциальной яме) и их ширины,

2. парциальных ширин уровней и их статистических свойств,

3. распределения энергии возбуждения осколков деления в переходном состоянии,

4. деления ядер в переходном состоянии с предварительным испусканием ?-кванта (или ?-квантов), изменяющего четность, понижающего барьер и увеличивающего вероятность деления (n,?f-реакция),

5.физических и технических характеристик нейтронного времяпролетного спектрометра на основе импульсного протонного пучка Московской мезонной фабрики при реализации проекта «РАДЭКС» в ИЯИ РАН («ТРОНС» - TOF-спектрометр).

Апробация работы и публикации:

Основные результаты, представленные в диссертации, докладывались на Международных и Всесоюзных Конференциях (Симпозиум по физике и химии деления, Зальцбург, Австрия, (1965), Международная Конференции по нейтронной физике, Антверпен (Бельгия), (1964), Международное совещание по методам обработки на ЭВМ, Дубна, (1968), Intern. Symposium on Nuclear Structure, Dubna, (1968), Англо-советский семинар по ядерным данным для реакторов, Дубна, 1968, Всесоюзная конференция по физике деления, Меликес, (1968), Х1Х ежегодное совещание по ядерной спектроскопии и структуре атомного ядра, Ереван, (1969), Международная конференция по ядерным данным для реакторов, Хельсинки, (1971), Всесоюзное совещание по методам Монте-Карло, Сухуми, (1969), Всесоюзной конференции по нейтронной физике, Киев, (1973, 1974, 1975, 1977), Международная конференция по ядерным данным, Санта-Фе, (США), (2005), ISINN, (Dubna), ICANS (2005, 2006), Всероссийское совещание по физике деления, Обнинск, (2003), Международное совещание по современным реакторам, Москва, (2006)) и были опубликованы в журналах (Phys. Lett. (1971), Nucl. Phys. (1973), Le Journal de Physique, (1973), Z.Phys. (1983), Nuevo Chimento, (1984), Ядерная физика, (1964-1978), Атомная энергия, (1965-2003), ПТЭ (1964-1973))

Структура и объем работы.

Диссертация состоит из введения, пяти глав и заключения. Объем диссертации составляет 177 страниц, 39 рисунков и 21 таблицу. Список литературы включает в себя 144 наименования, составлен к каждой главе и помещен в конце текста диссертации.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ.

Во Введении (Глава I) раскрывается актуальность научной проблемы, изучению которой посвящена настоящая работа. Изложены цели и методы исследований, научная новизна и практическая ценность работы, представлены положения, выносимые на защиту. Кратко описана структура диссертации и апробация работы.

В Главе II дано описание методик измерения парциальных сечений делящихся ядер-мишеней, примененных в исследованиях процесса деления в переходных состояниях. Даны характеристики времяпролетных спектрометров по времени пролета в ЛНФ ОИЯИ (Дубна) и CEN Saclay (Франция). При разработке методов нейтронной спектрометрии делящихся изотопов в ЛНФ ОИЯИ были опробованы различные варианты регистрации актов деления: газовый сцинтилляционный счетчик объемом 8.5 л, наполненного Xe до давления 2 атм., цилиндрическая ионизационной камера, уникальная многослойная искровая камера, позволяющая использовать граммовые количества ?-активных изотопов при эффективности регистрации осколков 40-60%, а ?-частиц менее 0.01% . Все перечисленные методы имеют низкую абсолютную эффективность регистрации исследуемой реакции и, кроме того, измерения только энергетической зависимости сечения деления и (или) полного сечения методом пропускания (методически самое простое исследование) содержат слишком ограниченную информацию о выходных каналах исследуемой реакции.

Для возможного использования в измерениях парциальных сечений деления и радиационного захвата был применен метод разделения мгновенных ? - квантов и нейтронов в кристалле стильбена по форме импульса (PSD). Счет протонов отдачи пропорционален числу делений в образце под действием нейтронов. Был создан детектор быстрых нейтронов на основе кристалла стильбен диаметром и образующей 7 см и ФЭУ-82, который обеспечивал работу при высоких счетных загрузках (до ~8х104 имп/с) и имел эффективность регистрации быстрых нейтронов в области энергий от 100 кэВ до 30 МэВ равную 80±10%. С помощью этого детектора был проведен ряд исследований на TOF-спектрометре на пролетном расстоянии 250 м и на электростатическом генераторе ЭГ-5 ЛНФ. Поскольку импульсный нейтронный источник на базе ИБР-1, ИБР-30 и ИБР-30 в режиме бустера при довольно высокой по тем временам интегральной интенсивности нейтронов имел длинный нейтронный импульс (43, 55 и 5 мкс, соответственно), то на пролетном расстоянии 1010 м (максимальное пролетное расстояние для нейтронного спектрометра по времени пролета) измеряемая ширина на полувысоте нейтронных резонансов составляла от нескольких десятков (для относительно высоких энергий нейтронов) до нескольких сотен мкс (для медленных нейтронов). Такая особенность нейтронного импульсного источника привела к оригинальной идеи создания высокоэффективной регистрирующей системы, позволяющей одновременно и с высокой эффективностью измерять сечения деления и радиационного захвата «толстых» образцов делящихся материалов. В основу была положена идея методики Рейнеса и Коуэна (1953-1959гг) по наблюдению взаимодействия реакторных нейтрино с протонами в реакции обратного ?-распада: ?e + р ? n + e+. При рассмотрении применения этой методики высокоэффективной регистрации быстрых нейтронов деления было отмечено, что в акте вынужденного деления кроме мгновенных нейтронов одновременно испускаются в среднем 10 ?-квантов со средней энергией ~0.75 МэВ, а при радиационном захвате – 3-5 ?-квантов с суммарной энергией, равной энергии связи нейтрона в составном ядре. Были проведены расчеты методом Монте-Карло времени жизни нейтронов деления в жидком сцинтилляторе состава CnH2n и различных концентрациях ядер Cd. Расчеты показали, что для получения высокой эффективности и малой зависимости ее от энергии регистрируемого нейтрона, необходимо, чтобы линейные размеры детектора в несколько раз превышали среднее расстояние, которое проходит нейтрон в процессе замедления. В интересующем нас интервале энергий это расстояние составляет от 3 до 11 см. При поглощении замедленного нейтрона ядро кадмия (основной вклад в сечение захвата дает Cd-113, составляющий 12.3% в естественной смеси изотопов) испускает каскад из 4-х ?-квантов с полной энергией 9.2 МэВ. Свободный пробег этих ?-квантов в органическом сцинтилляторе составляет 20-25 см. Именно эта величина и определяла геометрические размеры всего детектора.

Было изготовлено два таких детектора – один объемом 350 л с 32 ФЭУ-24 и основной детектор в виде двух усеченных конусов общим объемом 550 л с 8-ю новыми более стабильными большекатодными ФЭУ-49 с относительно низким уровнем собственных шумов. В качестве основного сцинтиллирующего вещества использовался пара-терфенил (р-дифенил-бензол, максимум спектра излучения ?=3910А) и смеситель спектра в диапазон спектральной чувствительности мультищелочного катода ФЭУ-49 - РОРОР. В качестве органического растворителя, который достаточно эффективен в отношении передачи энергии возбуждения под действием ионизирующего излучения молекулам основного сцинтиллирующего вещества и обладает низкой оптической плотностью (обратная величина длине свободного пробега фотона) для длин волн спектра испускания основного сцинтиллирующего вещества, использовался толуол. В нашей детектирующей системе, как и в работах Рейнеса и Коуена, кадмий вводился в виде раствора пропионовокислого кадмия (пропионата кадмия) в обезвоженном метиловом спирте. Уменьшение световыхода частично компенсировалось введением второй сцинтиллирующей добавки – нафталина, активированного антраценом. В результате полный световыход составлял 75% от световыхода «чистого» (без пропионата кадмия) сцинтиллятора. Созданный сцинтилляционный детектор являлся первым детектором такого типа с максимальным объемом (и эффективностью), наименьшим временем жизни нейтрона до захвата (8 мкс), и впервые использовался для экспериментов по времени пролета на нейтронных импульсных пучках.

Полное разделение случаев деления и радиационного захвата возможно только тогда, когда акты деления регистрируются с эффективностью 100%, что экспериментально до сих пор недостижимо. В использованной методике было возможно регистрировать только скорость счета актов деления в канале делений с некоторой эффективностью (относительно высокой) и скорость счета радиационного захвата вместе с ?-квантами деления (незарегистрированными в канале делений) в канале регистрации радиационного захвата. Последующей нормировкой возможно было полностью разделить зарегистрированные акты деления и радиационного захвата. В этом методе регистрации акта деления будет соответствовать импульс задержанного совпадения между импульсами, соответствующими регистрации мгновенных ?-лучей деления, фиксирующих момент деления, и регистрации ?-лучей от захвата кадмием одного из замедлившихся нейтронов деления, фиксирующего сам факт деления. Время, разделяющее эти события, определяется временем жизни нейтрона в замедляющей среде детектора до захвата ядром кадмия. Схема детектора и регистрирующей электроники приведена на рис.1. Эффективность регистрации актов деления равняется ?f=?f?*?fn, где ?f? - эффективность регистрации мгновенных ?-лучей деления, а ?fn - эффективность регистрации мгновенных нейтронов деления в выбранном временном окне. В реальных измерениях на нейтронном пучке фон случайных совпадений, а это основной фон в делительном канале, довольно точно учитывался введением задержки, в 5 раз превышающей среднее время жизни нейтрона в детекторе. К этому моменту от зарегистрированного акта деления остается «хвост» нейтронов, не превышающий ~0.6%. Такая информация также накапливалась в отдельной блоке памяти. Случаи, незарегистрированные в делительном канале, регистрировались в канале антисовпадений, предназначенном для выделения актов радиационного захвата. Счет по каналу антисовпадений, кроме зарегистрированных актов

Рис. 1. Один из первых вариантов организации сбора информации с жидкостного сцинтилляционного детектора объемом 300л.

загрузка...