Нелинейные динамические модели пространственно-развитых систем (решетки связанных отображений, системы с запаздыванием) (18.02.2008)
Автор: Прохоров Михаил Дмитриевич
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ Проведено исследование явления мультистабильности колебательных состояний и бассейнов их притяжения в системе двух диссипативно связанных квадратичных отображений с использованием способа различения мультистабильных состояний по фазовому признаку. Аналитически обнаружено и численно исследовано существование несинфазных режимов колебаний при сильной связи подсистем. Установлено, что области несинфазных колебаний при слабой и сильной связи симметричны друг другу в пространстве параметров системы, но сами несинфазные режимы качественно различны. Показано, что введение связи между элементами приводит к появлению устойчивых режимов, существующих при таких значениях параметра нелинейности, достижение которых в отсутствие связи было бы невозможным. Исследована структура бассейнов притяжения мультистабильных состояний системы связанных квадратичных отображений и их эволюция при изменении параметров. Исследовано явление нарушения равенства вероятностей постбифуркационных состояний системы связанных квадратичных отображений с изменяющимися во времени параметрами. Показано, что в зависимости от величины коэффициента связи в системе наблюдается запаздывание бифуркаций либо несинфазных, либо синфазных состояний. В области мультистабильности с уменьшением скорости изменения управляющего параметра наблюдается уменьшение вероятности установления состояний, соответствующих видам колебаний, возникающим в результате более поздних бифуркаций. В результате действия шума вероятности нахождения связанной системы в каждом из возможных конечных состояний начинают выравниваться, причем эффект выравнивания вероятностей тем больше, чем выше уровень шума и меньше скорость изменения бифуркационного параметра. Для пространственно-развитой системы, представляющей собой замкнутую цепочку синфазно возбуждаемых бистабильных осцилляторов, предложена и исследована дискретная модель в виде кольца связанных мультимодальных отображений. Получено уравнение эволюции во времени пространственных мод возмущений цепочки в окрестности неподвижных точек. Показано, что эволюция однородных пространственных состояний кольца к хаосу происходит только через последовательность бифуркаций удвоения периода. Для неоднородных состояний показано, что в кольце с нечетным числом элементов переход к хаосу может происходить только через последовательность бифуркаций удвоения периода, а в кольце с четным числом элементов в зависимости от пространственного периода структуры наблюдаются как бифуркации удвоения периода, так и бифуркации рождения тора. Рассмотренная модель хорошо качественно описывает характер перехода к хаосу пространственно-временных структур, наблюдаемых в натурном эксперименте в замкнутой цепочке неавтономных резистивно связанных колебательных контуров с диодом. Осуществлено управление пространственно-временным хаосом в цепочке связанных бистабильных осцилляторов. Показано, что воздействие на систему малого шума на начальном этапе управления может существенно уменьшить величину управляющего воздействия, необходимого для перевода цепочки из режима развитого пространственно-временного хаоса в области бистабильности в пространственно однородный режим. Проведено исследование пространственно-временных структур в двумерных и трехмерных решетках неавтономных бистабильных осцилляторов, моделируемых мультимодальными точечными отображениями. Установлено, что во временных реализациях систем с запаздыванием, описываемых дифференциальным уравнением первого порядка с одним временем задержки, практически отсутствуют экстремумы, удаленные друг от друга на время запаздывания. Эта особенность сохраняется и для временных реализаций систем с запаздыванием высокого порядка, при условии, что параметры, характеризующие инерционные свойства системы, достаточно малы. Во временных реализациях систем с запаздыванием с двумя и более временами задержки число экстремумов, разделенных интервалами времени, равными этим задержкам, существенно меньше, чем число экстремумов, разделенных другими интервалами времени. Предложены оригинальные методы восстановления по хаотическим временным рядам модельных дифференциальных уравнений с запаздыванием для различных классов пространственно-развитых систем с запаздывающей обратной связью, включая системы с запаздыванием высокого порядка и с несколькими временами задержки. Методы опираются на закономерности расположения экстремумов во временных рядах систем с запаздыванием и проецирование бесконечномерного фазового пространства системы с запаздыванием в подпространства малой размерности. Предложена методика определения по временному ряду априорно неизвестного порядка системы с запаздыванием. Разработанные методы протестированы на эталонных системах с запаздыванием и применены для построения по экспериментальным временным рядам модельных уравнений радиотехнических генераторов с запаздывающей обратной связью с различным числом линий задержки и последовательно соединенных низкочастотных RC-фильтров. Предложены методики восстановления кольцевых автоколебательных систем с запаздыванием по временным рядам различных наблюдаемых динамических переменных, полученным из различных точек системы. Предложен метод восстановления по временным рядам нелинейных динамических моделей систем с запаздывающей обратной связью, находящихся под внешним воздействием. Рассмотрены различные способы внесения внешнего воздействия в систему с запаздыванием. Метод работоспособен в широком диапазоне изменения величины внешнего воздействия, в том числе при уровнях воздействия на систему с запаздыванием, сопоставимых с уровнем собственных колебаний в системе в отсутствие воздействия. Предложен метод реконструкции модельных дифференциальных уравнений с запаздыванием для связанных систем с запаздыванием по их временным рядам. Метод позволяет восстановить параметры связанных систем с запаздыванием, а также установить наличие некоторых видов линейной связи между системами, определить априорно неизвестный тип связи, величину связи и ее направление по хаотическим временным рядам при достаточно высоких уровнях шума. Эффективность метода продемонстрирована на примере хаотических временных рядов связанных уравнений Маккея-Гласса, в том числе с добавленным шумом, а также на примере экспериментальных временных рядов связанных радиотехнических генераторов с запаздыванием. Разработана методика выделения скрытого сигнала сообщения в системах связи, использующих нелинейное подмешивание информационного сигнала в хаотический сигнал системы с запаздыванием. Она обеспечивает высокое качество восстановления передаваемого информационного сигнала при различных конфигурациях передающей системы, параметры которой априорно неизвестны. Работоспособность метода продемонстрирована на численных примерах и в эксперименте. Предложен метод определения параметров одномодового полупроводникового лазера с оптической обратной связью, описываемого уравнениями Ланга-Кобаяши. Предложены методы диагностики синхронизации автоколебаний внешним сигналом с изменяющейся частотой по многомерным и одномерным сильно зашумленным временным рядам. Методы применены для исследования по экспериментальным временным рядам внешней синхронизации неавтономного радиотехнического генератора с запаздывающей обратной связью и системы медленной регуляции кровяного давления, характеризуемой наличием запаздывания. Для описания медленных колебаний кровяного давления с собственной частотой около 0.1 Гц предложена модель в виде неавтономной системы с запаздывающей обратной связью, учитывающая влияние дыхания. Показано, что при гармоническом внешнем воздействии с линейно изменяющейся частотой предложенная модель демонстрирует явления захвата частот и фаз медленных колебаний кровяного давления и дыхания, качественно подобные наблюдающимся в эксперименте. Исследована возможность восстановления параметров модельных уравнений с запаздыванием по экспериментальным временным рядам артериального давления. Проведено исследование синхронизации между основными колебательными процессами сердечно-сосудистой системы человека на основе анализа как многоканальных, так и одноканальных данных. Продемонстрировано существование у здоровых людей областей синхронизации между дыханием и основным сердечным ритмом и между дыханием и медленными автоколебаниями кровяного давления с собственной частотой вблизи 0.1 Гц. Исследована зависимость качества синхронизации от режима дыхания и величины вариабельности сердечного ритма. Показано, что показатели синхронизации между ритмами сердечно-сосудистой системы могут быть использованы для диагностики ее состояния. СПИСОК ОСНОВНЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи в научных журналах: Bezruchko B.P., Prokhorov M.D., Seleznev E.P. Multiparameter model of a dissipative nonlinear oscillator in the form of one–dimensional map // Chaos, Solitons and Fractals, 1995, V.5, N.11, P.2095–2107. Безручко Б.П., Прохоров М.Д., Селезнев Е.П. Особенности устройства пространства параметров двух связанных неавтономных неизохронных осцилляторов // Письма в ЖТФ, 1996, Т.22, В.6, С.61–66. Прохоров М.Д. Виды колебаний диссипативно связанных систем с удвоением периода при сильной связи // Изв. ВУЗов, Прикладная нелинейная динамика, 1996, Т.4, N.4,5, С.99–107. Безручко Б.П., Прохоров М.Д. Управление пространственно-временным хаосом в цепочке бистабильных осцилляторов // Письма в ЖТФ, 1999, Т.25, В.12, С.51–57. Bezruchko B.P., Karavaev A.S., Ponomarenko V.I., Prokhorov M.D. Reconstruction of time-delay systems from chaotic time series // Phys. Rev. E, 2001, V.64, 056216. Караваев А.С., Пономаренко В.И., Прохоров М.Д. Восстановление моделей скалярных систем с запаздыванием по временным рядам // Письма в ЖТФ, 2001, Т.27, В.10, С.43–51. Ponomarenko V.I., Prokhorov M.D. Extracting information masked by the chaotic signal of a time-delay system // Phys. Rev. E, 2002, V.66, 026215. Безручко Б.П., Прохоров М.Д., Селезнев Е.П. Виды колебаний, мультистабильность и бассейны притяжения аттракторов симметрично связанных систем с удвоением периода // Изв. ВУЗов, Прикладная нелинейная динамика, 2002, Т.10, N.4, С.47–68. Пономаренко В.И., Прохоров М.Д. Выделение информационной компоненты хаотического сигнала системы с запаздыванием // Письма в ЖТФ, 2002, Т.28, В.16, С.37–44. Bezruchko B.P., Seleznev Ye.P., Ponomarenko V.I., Prokhorov M.D., Smirnov D.A., Dikanev T.V., Sysoev I.V., Karavaev A.S. Special approaches to global reconstruction of equations from time series // Изв. ВУЗов, Прикладная нелинейная динамика, 2002, Т.10, N.3, С.137–158. Пономаренко В.И., Прохоров М.Д. Восстановление уравнений системы с задержкой по экспериментальному временному ряду // Изв. ВУЗов, Прикладная нелинейная динамика, 2002, Т.10, N.1–2, С.52–64. Prokhorov M.D., Ponomarenko V.I., Gridnev V.I., Bodrov M.B., Bespyatov A.B. Synchronization between main rhythmic processes in the human cardiovascular system // Phys. Rev. E, 2003, V.68, 041913. Bezruchko B.P., Prokhorov M.D., Seleznev Ye.P. Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems // Chaos, Solitons and Fractals, 2003, V.15, N.4, P.695–711. Ponomarenko V.I., Prokhorov M.D., Karavaev A.S., Seleznev Ye.P., Dikanev T.V. Recovery of dynamical models of time-delay systems from time series // Изв. ВУЗов, Прикладная нелинейная динамика, 2003, Т.11, N.3, С.56–66. Bespyatov A.B., Bodrov M.B., Gridnev V.I., Ponomarenko V.I., Prokhorov M.D. Experimental observation of synchronization between rhythms of cardiovascular system // Nonlin. Phen. in Compl. Syst., 2003, V.6, N.4, P.885–893. Пономаренко В.И., Прохоров М.Д. Кодирование и извлечение информации, замаскированной хаотическим сигналом системы с запаздыванием // Радиотехника и электроника, 2004, Т.49, N.9, С.1098–1104. Пономаренко В.И., Прохоров М.Д. Реконструкция уравнений систем с двумя временами запаздывания по временным рядам // Письма в ЖТФ, 2004, Т.30, В.22, С.23–30. Пономаренко В.И., Гриднев В.И., Прохоров М.Д., Беспятов А.Б., Бодров М.Б., Караваев А.С. Синхронизация сердцебиения и ритма регуляции сосудистого тонуса с дыханием // Биомедицинские технологии и радиоэлектроника, 2004, N.8–9, С.40–51. Прохоров М.Д., Пономаренко В.И., Караваев А.С. Восстановление уравнений систем с запаздыванием под внешним воздействием по временным рядам // Письма в ЖТФ, 2004, Т.30, В.2, С.81–88. Prokhorov M.D., Ponomarenko V.I. Recovery of time-delay systems with two delays from time series // Nonlin. Phen. in Compl. Syst., 2004, V.7, N.4, P.400–404. Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ, 2005, Т.127, В.3, С.515–527. Prokhorov M.D., Ponomarenko V.I. Estimation of coupling between time-delay systems from time series // Phys. Rev. E, 2005, V.72, 016210. |