Амидообразование: влияние строения реагентов, свойств среды и температуры (15.06.2007)
Автор: Садовников Александр Иванович
Структура диссертации. Диссертация состоит из введения, 7 глав, выводов и списка цитируемой литературы. Общий объем диссертации составляет 310 страниц, содержит 93 таблицы, 35 рисунков и список цитируемой литературы из 367 наименований. Основное содержание работы Глава 1. Амидообразование в растворе (обзор литературы). Закономерности синтеза N-замещенных амидов карбоновых кислот с участием ангидридов карбоновых кислот, сложных эфиров и их тиоаналогов, а также галоидангидридов карбоновых кислот изучены многими авторами. Аминолиз этих соединений (ацилирующих агентов) является одним из основных способов получения соединений с амидной связью, а их реакционная способность во многом зависит от природы и строения уходящей (Х) группы: Легкоуходящими группами являются I, Cl, Br (Литвиненко Л.М.). Группа С6Н5О относится к трудноуходящим группам, а F- и CH3COO- группы проявляют среднюю способность к отщеплению от субстрата (Олейник Н.М.). Этот ряд реакционной способности ацилирующих агентов наблюдается как в реакции с алифатическими, так и в реакции с ароматическими аминами (Jencks W.P.). Положение ангидридов дикарбоновых кислот в этом ряду (Котон М.М., Праведников А.Н.) определить трудно из-за сильного влияния растворителя на скорость реакции. Наиболее изученной является реакция амидообразования с участием хлорангидридов карбоновых кислот с ароматическими аминами. На ее примере показана возможность получения количественных уравнений взаимосвязи констант скорости реакции со строением реагентов, свойствами среды и температуры (Курицын Л.В.). Дано также описание способа предсказания хода начальных стадий поликонденсационного процесса синтеза полиамидов с помощью этих уравнений (Курицын Л.В., Соколов Л.Б). Проанализированы особенности кинетики реакции ацилирования ариламинов ангидридами карбоновых и дикарбоновых кислот (автокатализ, обратимость реакции, образование изомеров). В высокоосновных растворителях обратимостью реакции можно пренебречь (Праведников А.Н.). Отмечено, что данные по влиянию растворителя на кинетику этой реакционной серии в литературе малочисленны и противоречивы. Приведены литературные данные о влиянии строения ароматических, алифатических аминов с эфирами карбоновых кислот (Menger F.M.). На примере реакции бензоилхлорида с ?-аминокислотами (Калинина Н.В.) показана возможность разделения параллельных потоков реакции N-ацилирования участием нейтральной и анионной формой аминокислоты и гидролиза сложного эфира. Глава 2. Количественный учет эффектов среды (обзор литературы). Влияние растворителя на скорость реакции принято связывать со специфической и неспецифической сольватацией. Влияние неспецифической сольватации на константу скорости реакции в небольшом, специально выбранном круге растворителей, может быть предсказано с помощью уравнения Кирквуда. При использовании специфически сольватирующих растворителей применение уравнения Кирквуда неэффективно. Многочисленные литературные данные показывают, что реагенты (ацилируюшие агенты и амины) реакции амидообразования в растворителях разной химической природы образуют молекулярные комплексы с молекулами среды. Это и является причиной сильного влияния растворителя в реакции амидообразования. Априорный расчет констант скорости в жидкой фазе, в том числе и с помощью квантово-химических расчетов, остается неразрешимой задачей. Учет влияние растворителя на кинетические параметры реакции для практического использования при планировании синтеза амидов возможен на основе различных эмпирических уравнений. В их основе заложен принцип линейности свободных энергий (ЛСЭ), и одним из наиболее известных уравнений, основанных на этом принципе, является многопараметровое уравнение Коппеля-Пальма. Оно не лишено недостатков. Одним из путей их преодоления является уменьшение числа параметров и подбор таких параметров, адекватность описания влияния растворителя которыми при этом возрастала. Еще более сложной проблемой является описание влияния состава смешанного растворителя на константу скорости реакции, когда возможно параллельное протекание реакции с участием различных молекулярных комплексов между компонентами среды и молекулами реагентов. Дано математическое обоснование уравнения зависимости константы скорости реакции от состава бинарного растворителя для реакции бензоилхлорида с ариламинами (Бобко Л.А.). Глава 3. Влияние среды на кинетические параметры реакции ариламинов с ангидридами дикарбоновых кислот. Одним из компонентов среды при ацилировании ариламинов ангидридами дикарбоновых кислот является продукт реакции – карбоновая кислота, которая является эффективным катализатором реакции. Для подтверждения бифункционального характера катализа карбоксильной группой реакции анилина с фталевым ангидридом в табл.1. приведены константы скорости автокаталитического (kA) потока реакции и потока реакции (k1), связанного с добавками веществ, в состав которых входят карбоксильная, амидная, карбонильная и гидроксильная группы. Таблица 1 Значения константы скорости k1 и kA реакции фталевого ангидрида с анилином в метилэтилкетоне при Т=298 К л2/(моль2(с) kA , л2/(моль2(с) Метилэтилкетон, п-нитрофенол бензанилид бензойная кислота м-нитробензойная кислота уксусная кислота о-Ксилол, бензойная кислота Нитрометан, бензойная кислота Диоксан, бензойная кислота 0 1.69 5.31 Реакция анилина с фталевым ангидридом ускоряется в присутствии карбоновых кислот, причем их каталитическая активность близка к каталитической активности продукта реакции. Монофункциональные соединения, содержащие карбонильную и гидроксильную группы по-отдельности, не обладают сколько-нибудь заметной каталитической активностью. Константа скорости некаталитической реакции в этих условиях составляет 1?10-4 л/(моль?с). Схему механизма бифункционального действия карбоновых кислот в реакции анилина с фталевым ангидридом можно представить следующим образом. На первой стадии реакции происходит образование молекулярных комплексов между реагентами трех видов в зависимости от полярности среды: неполярных (I), с частичным (II) или полным (III) переносом заряда (Nagy O.B.) В зависимости от природы растворителя реакция может развиваться по двум направлениям: с образованием циклических переходных соединений полярного (IV) или неполярного (V) характера. Механизм бифункционального катализа в обоих случаях одинаков: образуются циклические переходные состояния с участием двух групп катализатора – карбонильной и гидроксильной, при этом карбоновая кислота таутомерно изменяется. При проведении реакции в диоксане константа скорости каталитической реакции уменьшается в 100 раз по сравнению с величиной kA в о-ксилоле, а в амидных растворителях катализ карбоновой кислотой отсутствует. Снижение величины константы скорости kA сопровождается увеличением энергии активации реакции. Низкие значения энергии активации каталитической реакции согласуются с бифункциональным механизмом катализа карбоксильной группой (табл.2). Большие отрицательные значения энтропии активации реакции указывают на упорядоченное строение переходного состояния реакции, что также не противоречит бифункциональному механизму катализа. Таблица 2 ) активации реакции при Т=298 К Растворитель, (-рКа) kА, л2/(моль2(с) ЕА, Дж/(моль(К) Бензол (23) Толуол (-) о-Ксилол (-) |