Delist.ru

Магнитный резонанс и фазовые переходы в кристаллах оксокупратов и редкоземельных ферроборатов (31.01.2008)

Автор: Панкрац Анатолий Иванович

изучить влияние внешнего магнитного поля и построить магнитные фазовые диаграммы кристаллов, а также установить природу фазовых переходов.

Объекты исследования. Все исследования проведены на монокристаллах. В соответствии с поставленными задачами в качестве объектов исследования были выбраны следующие соединения.

Кристаллы оксокупратов: тетрагональный кристалл метабората меди CuB2O4, фазовая диаграмма которого содержит несколько геликоидальных состояний; орторомбический кристалл LiCu2O2 с квазиодномерной магнитной структурой; триклинный кристалл Cu5Bi2B4O14 с ферримагнитной структурой и тетрагональный кристалл Bi2CuO4.

Кристаллы редкоземельных ферроборатов: ферроборат гадолиния GdFe3(BO3)4, обе магнитные подсистемы которого образованы ионами в S-состоянии; ферроборат иттрия YFe3(BO3)4, содержащий только магнитную подсистему железа; кристаллы GdFe3(BO3)4 с диамагнитным разбавлением по обеим магнитным подсистемам.

Резонансные спектры поглощения всех перечисленных объектов наблюдались в диапазоне резонансных частот от 25 до 140 ГГц и в магнитных полях до 60 кЭ. Для обеспечения резонансных измерений в таких широких пределах был разработан автоматизированный спектрометр магнитного резонанса с широким диапазоном рабочих частот и импульсных магнитных полей, способный обеспечить выполнение поставленных физических задач на современном уровне.

Научная новизна. В процессе проведения исследований получены новые результаты, основные из которых выносятся на защиту.

На основе комплексных исследований магниторезонансных, магнитных и магнитострикционных свойств тетрагонального кристалла метабората меди CuB2O4 впервые построены магнитные фазовые диаграммы метабората меди в магнитных полях вдоль тетрагональной оси и в базисной плоскости кристалла. С помощью магнитного резонанса обнаружено новое магнитное состояние в интервале температур 9,5(20 К, а также два близкорасположенных фазовых перехода в модулированные состояния ниже температуры 1,8 К. Показано, что в магнитном поле вдоль тетрагональной оси причиной перехода из несоизмеримого в соизмеримое состояние при T<9.5 K является насыщение магнитным полем слабой подсистемы ионов меди, упорядоченной за счет обменного взаимодействия с сильной подсистемой.

Установлено, что резонансные свойства метабората меди в частотном интервале 3,5(80 ГГц обусловлены колебаниями в слабоупорядоченной подсистеме ионов меди. Магниторезонансные данные показывают, что эту подсистему можно рассматривать, как легкоплоскостной и легкоосный антиферромагнетик, соответственно, в несоизмеримом и соизмеримом слабоферромагнитном состояниях. В несоизмеримом состоянии резонансные свойства метабората меди не имеют признаков, характерных для спиральных магнетиков.

Впервые проведены исследования структурных, магнитных и резонансных свойств орторомбического кристалла LiCu2O2. Установлено, что это соединение является квазинизкомерным магнетиком. В области магнитного порядка LiCu2O2 обнаружена частотно-полевая зависимость резонанса, характерная для спиральных магнитных структур. Малое значение энергетической щели для этой ветви свидетельствует об очень слабой магнитной анизотропии в плоскости (ab).

. Предложена ферримагнитная структура этого кристалла с легкой осью вдоль триклинной оси с, подтвержденная нейтронными исследованиями. Обнаружено, что большинство угловых зависимостей намагниченности и резонансного поля ФМР в Cu5Bi2B4O14, в которых экстремумы чередуются через углы ((/2, хорошо описываются в рамках ромбической магнитной симметрии. Вид угловых зависимостей для исследованных плоскостей вращения объясняется характерным расположением ионов меди в этих плоскостях.

Впервые для кристаллов группы хантита исследован антиферромагнитный резонанс в GdFe3(BO3)4, YFe3(BO3)4 и кристаллах на основе ферробората гадолиния с диамагнитным замещением в обеих магнитных подсистемах. Установлено, что при температуре Нееля в этих кристаллах возникает антиферромагнитный порядок в подсистеме ионов Fe3+, а подсистема Gd3+ в GdFe3(BO3)4 при T

Магнитная анизотропия ферробората гадолиния определяется конкуренцией вкладов подсистем ионов Fe3+ и Gd3+, близких по абсолютной величине и имеющих противоположные знаки. Из сравнения с резонансными данными для YFe3(BO3)4 определены температурные зависимости вкладов подсистем. Показано, что в результате различия температурных зависимостей вкладов в этом кристалле в области магнитного порядка происходит спонтанный ориентационный переход из легкоосной в легкоплоскостную антиферромагнитную структуру. Впервые изучены магнитные фазовые диаграммы чистого и диамагнитно замещенного ферробората гадолиния в магнитном поле вдоль тригональной оси и в базисной плоскости.

Научная и практическая ценность работы. Научную ценность представляют нетривиальные экспериментальные результаты, полученные впервые в ходе выполнения работы. Эти результаты являются оригинальными и стимулируют развитие новых теоретических представлений о магнитном состоянии кристаллов с конкурирующими взаимодействиями. Среди таких результатов можно отметить следующие.

Магнитные фазовые диаграммы метабората меди, детально исследованные в широком интервале температур и магнитных полей, ориентированных как вдоль тетрагональной оси, так и в базисной плоскости. Особенно важен фазовый переход из спирального в соизмеримое состояние в магнитном поле, перпендикулярном плоскости спирали, свидетельствующий о ключевой роли слабоупорядоченной подсистемы в формировании спиральной структуры.

Обнаружение магнитного резонанса в спиральном магнетике LiCu2O2. Число экспериментальных работ по магнитному резонансу в модулированных магнитных структурах ограничено и значение их для развития теории резонансных свойств таких структур очень важно.

Необычным является обнаружение в триклинном кристалле Cu5Bi2B4O14 угловых зависимостей намагниченности и резонансного поля, симметрия которых близка к ромбической.

Научную ценность представляют магнитные фазовые диаграммы чистого и диамагнитно замещенных кристаллов ферробората гадолиния GdFe3(BO3)4. Исследования АФМР в ферроборате иттрия YFe3(BO3)4 позволили определить магнитное состояние подсистемы железа в кристаллах группы хантита и температурную зависимость ее константы магнитной анизотропии. Поскольку подсистема железа присутствует во всех кристаллах группы RFe3(BO3)4, эта информация будет востребована при анализе магнитного состояния кристаллов, выделении вкладов редкоземельных ионов в общую магнитную анизотропию и при прогнозировании областей существования в них магнитоэлектрического эффекта.

Практическую ценность имеет спектрометр магнитного резонанса с широкими диапазонами рабочих частот и магнитных полей, который является универсальным инструментом изучения спектров магнитных возбуждений широкого класса магнетиков. При автоматизации спектрометра разработана методика определения мгновенного значения магнитного поля в любой точке импульса и построения полевых разверток спектров резонансного поглощения. Методика, не требующая применения быстродействующего АЦП и основанная на использовании математической модели импульса тока через соленоид, может быть применена в любой научной или промышленной установке, использующей импульсные магнитные поля.

Апробация работы. Основные результаты исследований по теме диссертации были представлены и обсуждались на следующих симпозиумах, конференциях и совещаниях:

Московских международных симпозиумах по магнетизму MISM-2002 и MISM-2005 (Москва, Россия, 2002 и 2005 гг.);

Международных конференциях EASTMAG-2004 и EASTMAG-2007 (Красноярск, Россия, 2004г. и Казань, Россия, 2007 г.);

33-ем и 34-ом совещаниях по физике низких температур (Екатеринбург, Россия, 2003 г., Сочи, Россия, 2006 г.);

Международном симпозиуме по спиновым волнам Spin Waves-2007 (Санкт-Петербург, Россия, 2007 г.).

Личный вклад автора. Содержание диссертации отражает персональный вклад автора. В целом личный вклад автора является достаточно весомым в выборе направления исследования, постановке задач, планировании и проведении экспериментов. В частности, автор принимал активное участие в проведении всех магниторезонансных измерений и большей части магнитостатических измерений, а также в интерпретации всех полученных результатов. Автор также непосредственно участвовал в создании спектрометра магнитного резонанса с импульсным магнитным полем и принимал активное участие в его автоматизации.

Публикации. По теме диссертации опубликовано 24 печатных работы в рецензируемых отечественных и зарубежных журналах, получено 1 авторское свидетельство.

Структура диссертации. Диссертация состоит из введения, семи глав, заключения и списка цитируемой литературы. Общий объем составляет 257 страниц, включая 95 рисунков. Список цитированной литературы состоит из 285 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы, формулируются цели и задачи работы. Приведены основные положения, выносимые на защиту. Рассмотрена научная и практическая значимость работы.

Первая глава диссертации представляет собой аналитический обзор литературы по исследованию магнитного резонанса в различных типах магнетиков. Приведены основные сведения из теории магнитного резонанса в ферро- и антиферромагнетиках, используемые при обсуждении оригинальной части. В обзоре рассмотрены основные особенности магнитного резонанса в различных типах магнитоупорядоченных кристаллов: классических антиферромагнетиках, низкомерных магнетиках, соединениях с несколькими магнитными подсистемами, неколлинеарных и фрустрированных системах. В обзоре продемонстрированы большие возможности метода магнитного резонанса в исследовании магнитных структур и магнитных фазовых переходов. Особое внимание уделено описанию модулированных магнитных структур и особенностям магнитного резонанса в таких структурах. В конце главы сформулированы задачи диссертации и обосновывается выбор объектов исследования.

Вторая глава посвящена описанию спектрометра магнитного резонанса с импульсным магнитным полем и особенностям методики резонансных измерений в антиферромагнетиках. Широкополосный спектрометр магнитного резонанса с импульсным магнитным полем, разработанный в лаборатории резонансных свойств магнитоупорядоченных веществ Института физики СО РАН, обладает следующими техническими характеристиками:

рабочие частоты 25(140 ГГц,

импульсное магнитное поле напряженностью до 100 кЭ,

диапазон температур 4,2(400 К,

длительность импульса магнитного поля 12,63 мс,

неоднородность поля в центре катушек не хуже 5(10-4 в объеме 1 мм3,

точность установки угла поворота при вращении образца 0,1о.

Блок-схема спектрометра представлена на рис. 1. Высокочастотная часть представляет собой спектрометр прямого усиления. Магнитное поле создается разрядом батареи конденсаторов 10 на соленоид 6. Автоматизация спектрометра на первоначальном этапе выполнена в стандарте КАМАК с использованием стандартных модулей. Схема взаимодействия модулей и остальных узлов спектрометра приведена на рис. 1. Для регистрации спектра магнитного резонанса выбраны АЦП-10/1, имеющие следующие характеристики: разрядность 10, время преобразования 1 мкс, объем буферной памяти 4096*10 слов.

Для сглаживания данных с АЦП в канале измерения поля и построения полевой развертки спектров резонансного поглощения использован алгоритм, в котором импульс тока через соленоид описывается моделью колебательного контура из включенных последовательно активного сопротивления R, индуктивности L и емкости C. Параметры колебательной цепи определялись заранее из подгонки серии импульсов тока, записанных при различных напряжениях батареи конденсаторов V0. Обнаруженная слабая зависимость параметров цепи от V0 учитывалась поправочными коэффициентами, которые также определялись заранее и вводились в программу управления спектрометром. Такой алгоритм хорошо описывает ток в цепи соленоида для напряжений заряда до 1000 В со средней погрешностью аппроксимации менее 0,2 % в диапазоне полей, меньших 0,8 амплитуды импульса, именно такой диапазон обычно используется для наблюдения магнитного резонанса. Калибровка спектрометра выполнена по ферромагнитному резонансу в сферическом образце железо-иттриевого граната.

Программа управления спектрометром обеспечивает регистрацию спектров резонансного поглощения с автоматическим сохранением в файлы текстового формата, а также различные сервисные функции: регистрация условий эксперимента, возможность просмотра всех спектров текущего сеанса работы, возможность накопления сигнала и автоматической записи температурной зависимости спектра.

Оценка показывает, что разрешающая способность спектрометра достаточна для надежного воспроизведения формы резонансных линий с шириной более 50 Э.

загрузка...