Delist.ru

Индивидуальные особенности кинетики остеотропных веществ (30.11.2007)

Автор: Стариченко Вера Ивановна

Скорость аппозиционного роста, приводящая к замуровыванию и препятствующая выведению радионуклида из кости, практически одинакова у одновозрастных животных (1,8 ± 0,2 и 1,7 ± 0,2 мкм сут-1) и значимо выше у молодого взрослого животного (2,4 ± 0,1 мкм сут-1). Однако, исходя из представлений о сбалансированности процессов роста и резорбции у взрослых животных, мы считаем, что интенсивность резорбции у животного № 1 тоже самая большая. Высокий уровень резорбции противодействует задержке радионуклида в скелете и свидетельствует об относительно высокой функциональной активности остеокластов. Это косвенно указывает на увеличенную продукцию скелетом депонирующего агента, роль которого играют метаболиты типа лимонной кислоты, а основным источником являются остеокласты (Ньюман У., Ньюман М., 1961; Слуцкий Л.И., 1969; Торбенко В.П., Касавина Б.С., 1977). Под влиянием депонирующего агента 91Y, выведенный в кровь в результате резорбции, десорбции и обменных процессов в мягких тканях, при рециркуляции у молодого животного в бoльшей мере, чем у старых, аккумулируется в кости. У двух взрослых старых крыс интенсивность процессов роста и резорбции практически одинакова, а величина отношения площади поверхности скелета к объему крови, определяющая скорость процессов выведения радионуклида из скелета, у животного № 3 меньше.

Качественная обусловленность (направленность процессов накопления – выведения) индивидуальных особенностей обмена 91Y совокупностью параметров морфофизиологических факторов скелета, характеризующих отдельную особь, адекватно совпала с данными прямой прижизненной радиометрии. При этом экспериментальные кривые соответствуют расчетным, построенным по реальным параметрам МФФ этих животных. Хотя опыт был проведен с применением одного радионуклида, но, поскольку механизмы обмена являются общими для всех остеотропных веществ (Любашевский Н.М., 1980), можно считать его результаты качественно репрезентативными и для других радионуклидов, депонирующихся в скелете.

Оценить вклад каждого МФФ в кинетику 91Y на уровне целостного организма крайне сложно. Однако ранее нами для губчатой кости была обнаружена прямо пропорциональная зависимость удельной поверхности и ее массы (в противоположность обратной пропорциональности для целостных костей). Это позволяет по массе оценивать площадь поверхности и коррелирующие с ней параметры лимитирующих факторов. Данное обстоятельство положено в основу эксперимента, в котором моделью увеличения площади поверхности служило различное количество новообразованной костной ткани в результате репарации переломов.

Метаболизм 91Y в условиях репарирования костной ткани. Кинетику 91Y исследовали через 2 месяца после перелома, когда костная мозоль заместилась настоящей костной тканью и под новообразованной кортикальной костью сформировалась трабекулярная ткань. Несомненно, в ранние сроки могли проявиться более резкие различия, так как в это время область перелома накапливает радионуклид в количестве чуть ли не на порядок величин бoльшем, чем прилежащие отделы скелета (Торбенко В.П., Касавина Б.С., 1977; Фосфорно-кальциевый…, 1982; Свешников А.А. и др., 1984; Свешников А.А., 1986), однако костная мозоль химическим составом и гистологическим строением отличается от настоящей костной ткани (Русаков А.В., 1959; Уотсон-Джонс Р., 1972; Никитин Г.Д., Грязнухин Э.Г., 1983; Хмельницкий О.К. и др., 1983; Хэм А., Кормак Д., 1983; Ревелл П.А., 1993). Кроме того, за счет дестабилизации всех физиологических процессов (в том числе во внескелетных тканях) в этот период возникают дополнительные условия, осложняющие количественный учет депонирования радионуклида.

По данным прижизненной радиометрии четкой зависимости между числом нанесенных переломов (от 2 до 10) и изменением в кинетике 91Y выявить не удалось. Авторадиографические и радиометрические исследования показали резкое увеличение накопления 91Y местом бывшего перелома. При этом обнаружена корреляция между накоплением 91Y в локусе бывшего перелома и приростом массы костной ткани (рис. 4). Коэффициент корреляции уменьшается в направлении лучевая и локтевая кости – большая и малая берцовые кости – плечевая кость (0,81; 0,39; 0,34 соответственно), для лопатки корреляция отрицательна (-0,78). Такой разброс коэффициентов объясняется различиями в морфологии переломов отдельных костей. Общий коэффициент корреляции составляет 0,74 (p<0,001).

Рис. 4. Зависимость между изменением содержания 91Y и приростом костной массы в костях крыс, подвергнутых перелому: 1 – большеберцовая и малоберцовая кости, 2 – плечевая кость, 3 – лучевая и локтевая кости, 4 – лопатка.

На основании выявленной зависимости расчетным путем оценен минимальный сдвиг величины площади поверхности репарированной костной ткани экспериментальных животных, вызывающий значимые отличия в кинетике 91Y. Оказалось, что на локальном уровне сдвиг в аккумуляции 91Y может быть выявлен при изменении площади поверхности на 3-10 %, на тканево-системном уровне – на 28-70 %, на уровне всего организма – на 40-110 % площади поверхности всего скелета. В проведенном эксперименте значимое изменение содержания 91Y на локальном уровне было вызвано меньшей величиной площади поверхности репарированной кости (2-6 % площади поверхности всего скелета), однако истинное изменение площади поверхности может быть несколько бoльшим за счет возможного остеопороза, наступившего в результате снижения двигательной активности животных после переломов (Русаков А.В., 1959; Ревелл П.А., 1993; Свешников А.А., Смотрова Л.А., 2001; Оганов В.С., 2003).

Таким образом, сопоставление накопления 91Y в скелете отдельных крыс с морфофизиологическими параметрами скелета животных подтвердило их взаимосвязь. Показано, что для проявления индивидуальных особенностей метаболизма 91Y на уровне целостного организма два индивида должны различаться по величине площади поверхности скелета на 40-110 % (при относительной неизменности параметров всех других факторов), чего невозможно достичь в эксперименте на отдельных особях, не вызывая далеко идущих патологических нарушений. Поэтому нами применен метод аппроксимации индивидуальных характеристик групповыми показателями однородной по возрасту и генотипу выборки животных – инбредных линейных мышей. Индивиды одной линии с генетической точки зрения вполне взаимозаменяемы (Уильямс Р., 1960; Gupta A.P., Lewontin R.C., 1982), а вся инбредная линия представляет собой «коллективный индивид». На линейных мышах проведены дальнейшие экспериментальные исследования.

Кинетика 90Sr при нормальном и замедленном развитии скелета у животных разных возрастов. Одним из эффективных модификаторов ростовых процессов у мышей является длительная овсяная монофагия (см. раздел 3). После родов самок мышей линии CBA содержали на стандартной или овсяной диете. Рацион потомства оставался прежним и после перевода их на самостоятельное питание. В возрасте 8 нед (I возраст) и 12 нед (II возраст) контрольным и опытным мышам производили однократное введение 90Sr, через 3 нед животных подвергали эвтаназии.

На фоне возрастного увеличения массовых показателей выявлено уменьшение накопления 90Sr как у интактных, так и у опытных животных (рис. 5), что полностью соответствует возрастным закономерностям прироста тела и аккумуляции радионуклидов (Проблема выведения…, 1962; Куликова В.Г., 1966; Булдаков Л.А., Москалев Ю.И., 1968; Гольдман М., Делла Роза Р. Дж., 1971; Корнеев Н.А. и др., 1977; Радиобиология…, 1986; Вредные химические…, 1990; Журавлев В.Ф., 1990; Биокинетика…, 1996).

Рис. 5. Масса и концентрация 90Sr в бедренных костях мышей линии CBA (группы: К – контроль, О – опыт, I и II-го возрастов соответственно).

Согласно концепции ЛМФФ, одним из факторов выведения остеотропных веществ является соотношение «поверхность – объем» кости: чем оно больше, тем интенсивнее идет процесс элиминации. В длинных трубчатых костях удельная поверхность отрицательно коррелирует с их массой (рис. 1), что позволяет по массе оценивать соотношение «поверхность – объем». Поэтому при сравнении пары костей бедренная – большеберцовая можно предполагать, что у меньшей из них уровень депонирования радионуклида будет ниже. Действительно, бедренные кости внутри отдельных групп на 20-25 % тяжелее большеберцовых и концентрация 90Sr в них в среднем на 9,6 % выше. Это совпадает с данными других авторов о различиях аккумуляции радионуклидов в различных костях, а также в пределах одной и той же кости (К вопросу…, 1963; Швыдко Н.С. и др., 1987; Проблемы…, 1990; Wronski T.J. et al., 1980; Schofield G.B., 1982; Kathren R.L. et al., 1987).

Корреляция концентрации 90Sr и массы составляет -0,90 (p<0,01) (рис. 6) для бедренных и -0,88 (p<0,01) – для большеберцовых костей. Столь высокий уровень корреляции свидетельствует о связи кинетики радионуклида с фактором «поверхность – объем», опосредованно проявляющимся через массу костей.

Рис. 6. Уравнение и линия регрессии концентрации 90Sr в бедренных костях разновозрастных мышей линии CBA в зависимости от массы костей. Пунктиром обозначены границы 95%-ного доверительного интервала.

На протяжении всего эксперимента животные, содержавшиеся на овсяной монодиете, были гораздо мельче контрольных, поэтому, следуя логике предыдущих рассуждений, можно было бы ожидать, что удельная активность радионуклида в их костях будет ниже, чем в контроле. Полученные результаты (рис. 5), на первый взгляд, противоречат этому утверждению. Однако костные поверхности, кроме количественных параметров – «площадь», «скорость роста», «интенсивность резорбции» – характеризуются еще качественно – степенью минерализации. Оценкой минерализации кости (соотношение минерального и органического компонентов) можно считать коэффициент озоления – отношение массы золы к массе сырой кости. Известно, что количество минерализованной костной ткани после рождения увеличивается; у человека с определенного возраста начинает уменьшаться (Человек…, 1977; Георгиевский В.И. и др., 1979; Радиобиология…, 1986; Профилактика…, 2001; Свешников А.А., Репина И.В., 2007).

Коэффициент озоления бедренных костей животных I-го возраста равен: контроль – 0,30 ( 0,001, опыт – 0,23 ( 0,002; II-го возраста – 0,33 ( 0,002 и 0,25 ( 0,004 соответственно, что свидетельствует о наличии в костях опытных животных меньшего количества минеральных веществ. Следовательно, полностью минерализованной кости в скелете животных опытных групп приблизительно на 20-25% меньше, чем у контрольных (p<0,01). По прошествии месяца (временной разрыв между I и II возрастом) минерализация костной ткани у всех животных увеличивается, однако различия между контролем и опытом остаются на прежнем уровне. Известно, что не полностью минерализованная кость сильнее удерживает депонированные на ее поверхности радионуклиды (Ньюман У., Ньюман М., 1961; Книжников В.А., Марей А.Н., 1971; Любашевский Н.М., 1980). Радиометрические данные подтверждают это положение: у опытных животных концентрация 90Sr больше, чем у контрольных. Корреляция концентрации 90Sr и коэффициента озоления для бедренных костей составляет -0,77 (p<0,01) (рис. 7), для большеберцовых – -0,74 (p<0,01). При использовании удельной активности золы величина корреляции не изменяется (-0,88 – для бедренной кости, -0,84 – для большеберцовой, p<0,01). При этом обнаружена взаимосвязь коэффициента озоления и массы костей (например, для бедренной кости r = 0,80, p<0,01)

(рис. 8).

Рис. 7. Уравнение и линия регрессии концентрации 90Sr в бедренных костях разновозрастных мышей линии CBA в зависимости от коэффициентов озоления. Пунктиром обозначены границы 95%-ного доверительного интервала.

Интерес представляет сравнение II-ой опытной группы с I-м контролем. Опытные животные в возрасте 3,5 мес по всем изученным показателям еще не достигли уровня 2,5-мес контрольных животных. Например, масса тела – 13,7 ( 0,3 и 17,6 ( 0,2 г; масса бедренной кости – 0,0858 ( 0,002 и 0,1004 ( 0,001 г; концентрация 90Sr в бедренной кости 1266 ( 45 и 935 ( 17 Бк/г; коэффициент озоления – 0,25 ( 0,004 и 0,30 ( 0,001 соответственно. Полученные результаты свидетельствуют о несоответствии физиологического и хронологического возрастов костной ткани у животных опытных групп, то есть диета, состоящая в течение длительного времени из овса, замедляет не только темп роста тела, но и дифференциацию морфологических структур скелета. Факт различий физиологического и календарного возрастов при содержании животных в разных условиях или на разных диетах известен из литературы (Румянцев А.В., 1958; Пархон К.И., 1959; Касавина Б.С., Торбенко В.П., 1979) и свидетельствует о необходимости учета в физиологических исследованиях всех экзогенных факторов.

Рис. 8. Уравнение и линия регрессии коэффициента озоления бедренных костей разновозрастных мышей линии CBA в зависимости от массы костей. Пунктиром обозначены границы 95%-ного доверительного интервала.

???????????e

?????????e

???x?????n ????????

#такого морфофизиологического фактора, как соотношение «поверхность – объем» (удельная поверхность) костной ткани. Например, на уровне отдельных костей (бедренная – большеберцовая) кинетика 90Sr коррелирует (r = -0,9; p<0,01) с удельной поверхностью, оцениваемой по массе кости, то есть чем больше удельная поверхность кости, тем меньше концентрация 90Sr. Однако на уровне целостного скелета на конечный результат аккумуляции 90Sr в большой степени влияет и минеральная плотность костей: чем сильнее они недообызвествлены, тем выше величина накопления радионуклида (r = -0,7 – -0,8; p<0,01).

При хроническом поступлении в организм мышей стабильного фтора также показана корреляция его концентрации и массы бедренной кости (r = -0,35, p<0,01). Эта зависимость, как и при депонировании 90Sr (рис. 6), свидетельствует о связи кинетики остеотропного фтора с фактором «поверхность – объем».

Необходимо рассмотреть более подробно еще два фактора, от которых зависит уровень депонирования радионуклида – «интенсивность роста» и «скорость резорбции» костной ткани. Чем больше аппозиционный рост кости в момент поступления радионуклида, тем выше его аккумуляция в скелете. В отдаленные сроки, когда весь радионуклид прочно фиксирован костной тканью, на первое место среди факторов, определяющих выведение радионуклидов, выходит костная резорбция: чем выше ее скорость, тем интенсивнее выведение радионуклида.

Депонирование 90Sr в зависимости от интенсивности ростовых и перестроечных процессов в костной ткани. Вклад этих факторов оценен у одновозрастных животных. Схема эксперимента сходна с описанной выше. Сразу после родов самки мышей CBA были разделены на две группы – «контроль» и «монофагия». Через 4 недели (одновременно с отсадкой самок от потомства) из половины детенышей группы «монофагия» была сформирована группа «отмена монофагии». Животные этой группы начали получать виварный рацион и стали быстро расти. Из контрольной группы выделена группа животных, у которых искусственно усиливали костную резорбцию (группа «МР») путем многократного введения per os раствора дигидротахистерола (последнее введение – одновременно со 90Sr). 90Sr вводили в возрасте 8 недель. Эфирная эвтаназия произведена в два этапа – через 1 и 21 сутки после введения радионуклида. Всего сформировано 8 экспериментальных групп: «контроль», «МР», «монофагия» и «отмена монофагии», индексы 1 или 2 указывают на время, прошедшее после введения 90Sr.

Рис. 9. Концентрация 90Sr в бедренной кости и его содержание в скелете мышей CBA (группы: 1, 5 – контроль; 2, 6 – введение МР; 3, 7 – овсяная монофагия; 4, 8 – перевод на виварный рацион, через 1 и 21 сутки после введения 90Sr соответственно).

Массовые характеристики животных, переведенных с овсяной монофагии на виварный рацион, и животных с модифицированной костной резорбцией близки к контролю и друг к другу. Иная картина наблюдается для концентрации 90Sr: через 1 сут после введения обращают на себя внимание значимые (p<0,05) различия в депонировании 90Sr в костях животных групп «МР-1» и «отмена монофагии-1» по сравнению с контролем-1 (рис. 9). Концентрация 90Sr меньше как в бедренной, так и в большеберцовой кости животных группы «МР-1» (1558 ± 75 и 1453 ± 64 Бк/г) по сравнению с группой «контроль-1» (1786 ± 70 и 1657 ± 61 Бк/г) соответственно. В группе «отмена монофагии-1», наоборот, наблюдается превышение контрольных уровней: 2164 ± 83 и 1933 ± 87 Бк/г соответственно. При этом концентрация 90Sr в костях животных группы «отмена монофагии-1» занимает промежуточное положение между группами «контроль-1» и «монофагия-1»: 2685 ± 68 Бк/г – в бедренной и 2279 ± 74 Бк/г – в большеберцовой кости. (В данном эксперименте группы «монофагия» использованы как исходные для получения животных групп «отмена монофагии» и будут рассмотрены отдельно).

Через 21 сут значительное количество радионуклида выводится из организма. Концентрация 90Sr в обеих опытных группах к этому сроку не отличается от контрольной. Однако различия в содержании 90Sr в скелете между опытными группами остаются на прежнем уровне (рис. 9). Через 1 сут содержание в скелете составляет: «МР-1» – 45,0 ± 1,7, «отмена монофагии-1» – 56,1 ± 0,7 % от исходного, через 21 сут – 23,9 ± 1,2 и 31,4 ± 0,7 % от исходного соответственно.

Таблица 2

Скорость периостального костеобразования на уровне середины диафиза в длинных трубчатых костях экспериментальных мышей, мкм сут-1 (M ± m)

Возраст, нед1) Группа Бедренная Большеберцовая

8 Контроль-1 0,62 ± 0,03 0,52 ± 0,02

МР-1 0,50 ± 0,03* 0,43 ± 0,03*

Монофагия-1 0,38 ± 0,04* 0,30 ± 0,02*

Отмена монофагии-1 0,62 ± 0,02 0,49 ± 0,02

11 Контроль-2 0,53 ± 0,03 0,44 ± 0,02

МР-2 0,59 ± 0,06 0,53 ± 0,03*

Монофагия-2 0,36 ± 0,02* 0,30 ± 0,02*

загрузка...