Delist.ru

Методология и методы количественного исследования процессов цепного окисления, деструкции и ингибирования индивидуальных углеводородов, карбоцепных полимеров и нефтепродуктов (30.08.2007)

Автор: Харитонов Вячеслав Васильевич

глобул, где создается высокая локальная концентрация реакционноспособных молекул и радикалов. По мере окисления ЛГКК глобулы растут, превращаясь в (микрореакторы(, в которых интенсивно протекает большой набор разнообразных химических превращений. Это сопровождается быстрым расходованием кислорода в (микрореакторах( при затрудненной его диффузии внутрь глобул. Так создаются условия для протекания реакций в диффузионных условиях, когда важную роль играют реакции с участием радикалов R(: индуцированный распад гидропероксидов, реакции сшивки, полимеризации, дегидрирования и др., которые запускают процессы образования смол и осадков. Были получены аналитические выражения, позволяющие определять численные значения параметров (1 = kи1 / R( ([O2] и (2 = kи2 / k1 ([O2], которые относятся к реакциям R( + ROOH RH + RО2( и R( + ROOH ROR + (ОH  соответственно. С учетом роли (природных( ингибиторов, всегда имеющихся в ЛГКК, и введением в классическую схему окисления углеводородов реакций индуцированного распада гидропероксидов были количественно описаны все экспериментальные данные по инициированному и автоокислению ЛГКК кислородом и воздухом.

Окисление ДТ изучали согласно развиваемому подходу. По начальным скоростям в специальных сериях опытов определяли численные значения параметров Рj, количественно описывающих кинетики поглощения кислорода и накопления гидропероксидов на самых ранних стадиях окисления. Значения Рj ДТ оказались практически равными таковым для н-гептадекана (70% ДТ составляют парафиновые углеводороды). Однако, несмотря на это, окисление ДТ близко к окислению ГД только первые десять минут, после чего окисление ДТ резко затормаживается. Было сделано предположение, что причиной самоторможения служит индуцированный распад гидропероксидов аналогично тому, как это происходит в окисляющемся ЛГКК, поскольку ДТ тоже полидисперсная система. Окисляющееся ДТ тоже представляет собой гетерогенную систему, в которой одновременно реализуются два взаимозависимых, но разных механизма окисления. Один набор реакций протекает в дисперсионной среде, в кинетической области, а другой в дисперсной фазе, в диффузионной области, Именно в последней создаются условия для интенсивного образования смол и осадков.

В главеVII диссертации подробно обсуждается гипотеза о важной роли (микрореакторов( в процессе окисления нефтепродуктов: ЛГКК, ДТ и их смеси. Гипотеза объясняет, почему в (микрореакторах( протекают реакции, приводящие к образованию смол и осадков и как химизм этих превращений зависит от условий окисления. Она легко и очевидным образом снимает все пять разнохарактерных, принципиальных противоречий, имеющихся в литературе по поводу механизма образования осадков.

Гипотеза о гетерогенности процессов оказалась очень продуктивной при объяснении многих известных, но еще не нашедших четкого объяснения фактов, характерных для глубокого окисления индивидуальных углеводородов. Например, такие центральные вопросы теории и практики цепного окисления, как: каковы причины большого разнообразия продуктов окисления? Какова последовательность их образования? Какова природа максимальной концентрации гидропероксидов? Почему так резко падает скорость поглощения кислорода после прохождения максимума, так низка степень конверсии?

Чтобы получить ответы на эти и другие вопросы исследовали глубокие стадии окисления н-гептадекана. На рис. 4 показана кинетика поглощения кислорода (кривая 1) и соответствующая ей скорость изменения давления в системе (кривая 2).

Видно, что падение давления за счет поглощения кислорода временами прерывается резким ростом давления ( +(р). Отметим наиболее характерные черты этого явления:

Газовыделение имеет характер спонтанного взрыва.

Скорость изменения давления практически мгновенно меняется на много порядков – от – dp/dt до + dp/dt

Каждый акт взрывного газовыделения очень непродолжителен (110(10 с) по сравнению с общей длительностью реакции (22 000 с).

Количество выделившихся газов сравнительно невелико и составляет в среднем (1,1(0,1)(10-2 миллимолей на мл окисляющегося ГД.

Газовыделение преращается также внезапно, как и начинается.

По завершении импульса газовыделения резко восстанавливаются и скорость окисления, и кинетика поглощения кислорода.

По аналогии с результатами, полученными при изучении закономерностей окисления газойля и ДГ, можно предположить, что в ходе окисления неполярного ГД полярные кислородсодержащие продукты его превращения по достижении определенной концентрации (аналог ККМ) образуют мицеллоподобные ассоциаты – полярными функциональными группами внутрь, неполярными углеводородными (хвостами( - в неполярный ГД. Образуется аналог (обращенных( мицелл. В них создается высокая локальная концентрация определенным образом ориентированных реакционноспособных частиц – молекул и радикалов. Поэтому здесь, как в (микрореакторах(, создаются условия для быстрого протекания самых разных реакций, в том числе с образованием как высокомолекулярных продуктов (реакции полимеризации, сшивки, конденсации, этерификации), так и низкомолекулярных, летучих продуктов (деструкция, дегидрирование, дегидратирование, декарбоксилирование и др.).

Чтобы проверить, насколько общий характер имеет открытое явление, исследовали глубокие стадии окисления ГД при разных Wi. Оказалось, что сущест-вует строго определенная концентрация поглощенного кислорода [O2]кр ((критическая(), по достижении которой начинаются импульсы газовыделения незави-симо от того, при какой температуре и при какой Wi проводится опыт. С ростом Wi лишь сокращается время достижения [O2]кр пропорционально Wi1/2. Кроме то-го, явление самоструктурирования окисляющихся систем наблюдается и при окислении других субстратов: цетилового спирта и основы синтетического масла.

В заключение необходимо еще раз подчеркнуть следующее: гипотеза о самоструктурировании окисляющейся среды, впервые выдвинутая и подтвержденная экспериментально в настоящей работе, позволяет рассматривать процессы цепного окисления как результат непрерывного взаимовлияния физико-химических свойств исходного окисляющегося субстрата на механизм “начальных” стадий его окисления и на условия самоструктурирования системы – с одной стороны, и влияние химических и физико-химических свойств продуктов окисления, особенно образующихся из них “микрореакторов”, на механизм окисления субстрата – с другой стороны. В “тандеме”, в котором часть продуктов превращения, образующихся в дисперсионной среде (в кинетической области) поступает на “переработку” в “микрореакторы” (диффузионная область), роль последних непрерывно растёт с глубиной процесса. Весьма вероятно, что это обстоятельство и является одной из главных причин как большого разнообразия продуктов превращения и их “параллельного” образования, так и самоторможения процессов окисления. Несомненно, эти представления значительно расширяют область теоретических и экспериментальных исследований процессов цепного окисления индивидуальных углеводородов и смесей сложного состава, указывают новые пути повышения эффективности ингибиторов и катализаторов в направленном влиянии на механизм окисления.

и показано, что основной вклад в суммарную скорость деструкции обоих полимеров вносит распад макрорадикалов RO2( по реакции первого порядка относительно их концентрации. Разрыв С-С связей при рекомбинации радикалов RO2( составляет 6-10% и эта доля слабо меняется с глубиной окисления. Поскольку полимерные материалы теряют свои свойства уже в самом начале деструкции, изучение распада RO2( радикалов с разрывом углеродного скелета молекулы приобретает принципиальное значение. Были изучены кинетические закономерности разрывов С-С связей при распаде макрорадикалов RO2( полиэтилена и полипропилена и показали, что это происходит по реакции RO2( ( >C=O + CH2=C< + (OH. Экспериментально установлено, что скорость деструкции равна скорости накопления непредельных соединений (НС). Это позволило предположить, что путем измерения скорости накопления НС при окислении низкомолекулярных соединений можно получить информацию о закономерностях деструкции в этих процессах. Для проверки предположения изучили кинетические закономерности образования НС в окисляющемся н-пентадекане по той же программе, по которой исследовали механизм деструкции и накопления НС в окисляющихся полимерах. Оказалось, что на качественном уровне буквально все закономерности накопления НС в окисляющемся низкомолекулярном соединении совпадают с закономерностями накопления (и, следовательно, деструкцией) НС в окисляющихся полимерах. Количественные характеристики заметно расходятся: если в н-пентадекане один акт разрыва С-С связи (деструкции) приходится на 350 актов взаимодействия RO2( с углеводородом без деструкции, то например, при окислении растворенного полипропилена один акт деструкции приходится на каждые 82 акта продолжения цепи.

Важно было установить до каких глубин описывает предлагаемый механизм деструкции закономерности накопления НС в окисляющихся низкомолекулярных соединениях. С этой целью детально изучили окисление н-пентадекана при 393, 403, 413, 423 и 433 К. Измеряли кинетики поглощения кислорода, накопления гидропероксидов и двойных связей (прибор АДС-4). Используя возможности математической модели окисления н-пентадекана рассчитали концентрации радикалов RO2( и, по формуле Vнс = ks1([RO2(] + ks2([RO2(]2 получили расчетные кинетики накопления НС. Они вполне удовлетворительно описывают экспериментальные данные во всем диапазоне температур. Тем самым можно считать доказанным, что механизм окислительной деструкции низко- и высокомолекулярных соединений имеет общий характер, общую основу – распад пероксильных радикалов. Помимо этого результата проделанная работа имеет и важный методический характер: впервые предложена методика количественного исследования механизма окислительной деструкции низкомолекулярных соединений, суммарная скорость которой определяется тремя реакциями:Vs1 = ks1([RO2(]; Vs2 = ks2([RO2(]2; Vs3 = ks3( [ROOH]. Vs3 мы находим по разности Vs3 = Vs ( - Vs2 и кинетикам накопления ROOH. Поскольку методика прошла экспериментальную проверку, мы предлагаем включить эти три реакции разрывов С-С связи в общепринятую схему начальных стадий окисления углеводородов.

В последней, IХ главе описаны конструкции установок, созданных специально для обеспечения требований, предъявляемых к эксперименту постановкой задачи: количественное исследование процессов окисления, деструкции и

стабилизации углеводородных материалов.

Для изучения скорости ингибированного и не ингибированного окисления были созданы высокочувствительные дифференциальные манометрические установки (ВДМУ), сопряженные с ЭВМ.

Их основные характеристики:

На два-три порядка расширен диапазон надежно измеряемых скоростей.

Позволяют (без всякой переналадки) в ходе одного опыта измерять как самые малые (( 10-8 моль/л(с), так и самые большие скорости окисления ((10-3 моль/л(с) при большом суммарном количестве поглощенного кислорода.

Обеспечивают возможность максимально снизить трудоемкость эксперимента и повысить оперативность обработки полученных данных.

С одинаковой точностью измеряют как скорость падения, так и скорость роста давления в системе.

Для количественного изучения кинетических закономерностей окислительной деструкции полимеров разработаны специальные методики и оригинальное приборное обеспечение этих методик.

Изменена конструкция премного резервуара вискозиметра Уббеллоде, что позволило тратить на каждое измерение характеристической вязкости 15-20 см3 растворителя вместо 150-200 см3 в (классическом( варианте. Это было необходимо сделать потому, что предстояло провести многие десятки измерений.

Создан прибор, объединяющий в единое целое барботажный реактор (окисление растворов полимеров) и вискозиметр для измерения относительной вяз-кости растворов. Он позволяет проводить 20-30 измерений вязкости в ходе одно-го опыта. По кинетическим кривым изменения вязкости определяли скорость дес-трукции полимера и ее зависимость от концентрации и молекулярной массы полимеров, концентрации макрорадикалов (изменение скорости инициирования Wi), состава радикалов (зависимость от рО2), добавок ингибиторов, температуры.

Для количественного изучения механизма окисления твердых полимеров и механизма тормозящего действия ингибиторов в этих процессах создан вариант ВДМУ, значительно облегчающий эти трудоемкие исследования.

Созданы и экспериментально обоснованы методология и методы количественного изучения ингибированного окисления как целостного процесса с экспериментальной идентификацией его ключевых реакций и определением их количественных характеристик непосредственно в условиях опытов.

Для изучения влияния строения молекул ингибиторов на механизм и эффективность их действия был предложен новый прием – оценивается влияние основных элементов (фрагментов) структуры молекул InH и радикала In? на численные значения кинетических параметров каждой из ключевых реакций, совокупность которых определяет суммарный механизм торможения. Получены новые, количественные данные о зависимости эффективности и механизма действия ингибиторов от структуры InH и условий окисления на этой основе :

. предложена трехуровневая система скрининга эффективности действия антиоксидантов и пакетов присадок и устойчивости к окислению широкого спектра углеводородных материалов.

. предложен новый метод полуэмпирического прогнозирования меха-низмов действия антиоксидантов с использованием математических моделей кинетических закономерностей процессов ингибированного окисления.

3. Открыто явление многократного обрыва цепей при окислении вторичных спиртов, ингибированного ароматическими аминами. Получены экспериментальные данные, на основании которых высказана гипотеза о регенерации ингибиторов в актах обрыва цепей как принципиальной основе многократного обрыва цепей. Предложен формальный механизм реакции регенерации и обоснована необходимость ее включения в общепринятую схему ингибированного окисления для количественной характеристики длительности тормозящего действия антиоксидантов.

4. На примере количественного исследования процессов окисления образцов реактивных топлив Т-6 предложен научно-обоснованный скрининг окисляемости углеводородных материалов с получением (кинетического паспорта(, раскрывающего причины различной окисляемости образцов и позволяющего прогнозировать сроки и оптимальные условия их эксплуатации.

5. На количественном уровне изучены кинетические закономерности процессов окисления важнейших нефтепродуктов: реактивных и дизельных топлив, легкого газойля каталитического крекинга, основ синтетических и минеральных масел, масел и пластических смазок. Установлено, что механизм окисления нефтепродуктов существенно, иногда принципиально отличается от такового для индивидуальных углеводородов. Впервые выдвинута гипотеза, что главной причиной этого различия является полидисперсность нефтепродуктов, которая способствует быстрому образованию мицелоподобных частиц - (микрореакторов(. Гипотеза подтверждается большим объемом различных экспериментальных данных и снимает, в частности, принципиальные противоречия, существующие в современных представлениях о механизме образования смол и осадков.

6. Открыто и экспериментально исследовано явление взрывообразных толчков газовыделения, появляющихся на глубоких стадиях окисления углеводородов. Предложена гипотеза о самоструктурировании окисляющейся среды – образование ассоциатов полярных продуктов окисления субстрата (типа обращенных мицелл) и их распаде как причине наблюдаемого явления. Гипотеза дает объяснение многим особенностям глубокого окисления углеводородов и открывает новые перспективы в изучении этих процессов.

7. Впервые установлены и экспериментально изучены кинетические закономерности окислительной деструкции карбоцепных полимеров (полиэтилена и полипропилена). Показано, что механизм деструкции при окислении полимеров в растворе и твердой фазе на качественном уровне одинаков и меняется с глубиной окисления. Вначале это разрыв С-С связей при распаде пероксильных радикалов, затем к нему добавляется деструкция при их квадратичной рекомбинации и затем – деструкции на стадии гидропероксидов. Определены численные характеристики всех этих реакций, оценен вклад каждой из них в суммарную скорость деструкции и его изменение с глубиной окисления полимера (в растворе и твердой фазе).

8. Созданы оригинальные высокочувствительные дифференциальные манометрические установки, сопряженные с ЭВМ, принципиально расширяющие возможности глубокого количественного изучения кинетических закономерностей ингибированного и не ингибированного окисления углеводородов, полимеров, нефтепродуктов и многих других субстратов.

9. Разработана методика и создано специальное приборное обеспечение для количественного изучения кинетических закономерностей окислительной деструкции полимеров.

загрузка...