Delist.ru

Комплекс решений по оптимизации передачи данных в радиоканалах с замираниями (30.08.2007)

Автор: Мелентьев Олег Геннадьевич

Особенностью системы ГРОС-СКК является то, что вероятности правильного приёма блока после первой, второй и третьей попыток передачи различны. Это приводит к необходимости использования при вычислении векторов распределения вероятностей состояний системы после l-той попытки передачи – трёх матриц переходных вероятностей (P1, P2, P3). Структура и размерность данных матриц одинаковы, а элементы определяются выражениями:

где Pe – вероятность обнаружения хотя бы одной ошибки в блоке n; Pпп2 и Pпп3 – вероятности правильного приёма блока n после исправления ошибок во второй и третей попытках передачи, соответственно.

Вероятности Pпп2 и Pпп3 определялись путём имитационного моделирования. Дискретный канал был описан моделью Гилберта со следующими параметрами: средняя длина хорошего состояния 200 элементов, средняя длина плохого состояния 14 элементов и вероятность ошибки в плохом состоянии 0.5.

Рис. 17 Зависимости вероятности правильного приёма блока во второй и третьей попытках передачи от длины блока n

Моделирование показало зависимость искомых вероятностей от глубины перемежения. Оптимизируя глубину перемежения для каждой длины блока в системе ГРОС-СКК, можно значительно повысить вероятность правильного приёма блока. Зависимости вероятностей Pпп2 и Pпп3 от длины блока n для системы без перемежения и системы, использующей перемежение с оптимальной глубиной для каждой длины блока, показаны на рисунке 17.

Вероятность успешной доставки пакета, затраты двоичных элементов на передачу пакета из N блоков за Lm попыток в прямом и обратном каналах и относительная скорость передачи информации определяются аналогично системе ГРОС-БКК.

Было проведено моделирование ВВХ всех рассмотренных систем с гибридной обратной связью и системы с классической обратной связью и адресным переспросом при работе по дискретному каналу с группирующимися ошибками. Основные зависимости ВВХ рассматриваемых систем от допустимого числа переспросов (Lm) представлены в таблице.

систем ГРОС значительно повышается. Суммарные затраты на доставку сообщения при использовании гибридной системы меньше с третьей попытки передачи. Увеличение вероятности успешной доставки одновременно с уменьшением затрат приводит к значительному выигрышу гибридной системы по относительной скорости передачи информации.

Сравним основные ВВХ рассмотренных систем с ГРОС между собой.

- После второй попытки передачи вероятность успешной доставки сообщения в системе ГРОС-БКК значительно превышает вероятность успешной доставки систем ГРОС-СКК и ГРОС-ККК. Это объясняется тем, что корректирующая группа блочного кода обеспечивает исправление большего числа ошибок, чем свёрточный код (2.1, v+1) после второй попытки.

- После третьей попытки передачи вероятность успешной доставки сообщения в системе ГРОС-ККК превышает вероятность успешной доставки остальных систем. Такой результат объясняется тем, что свёрточный декодер после второй попытки уменьшает количество ошибок, а переданная в третьей попытке корректирующая группа обеспечивает эффективное исправление уже меньшего числа ошибок.

- Затраты элементов после второй попытки передачи в системе с БКК несколько меньше, чем в других системах, так как длина корректирующей группы r2 может быть меньше длины блока.

- Увеличение вероятности успешной доставки одновременно с уменьшением затрат приводит к выигрышу по относительной скорости передачи информации системы с БКК над системами с СКК и ККК.

Обобщая полученные результаты, можно отметить превосходство систем ГРОС-БКК над системами ГРОС-СКК и ГРОС-ККК. Однако следует заметить, что при моделировании систем в данной работе использовались самые простые свёрточные коды (2,1,3) и (3,1,3). Следовательно, можно предположить, что при использовании кодеров с большим значением длины кодового ограничения качественные характеристики системы с ГРОС-СКК и ГРОС-ККК повысятся. Кроме того, блочные декодеры с высокой исправляющей способностью значительно сложнее свёрточных, а их работа требует больших вычислительных затрат, что накладывает соответствующие требования на элементную базу. В данном случае система ГРОС-СКК проще в реализации и, как показало моделирование, позволяет получить существенный (в 2 и более раза) выигрыш относительно классических систем с переспросом.

В шестой главе проводится моделирование адаптивных систем с изменением длины блока, на основе анализа качества приёма. Качество, или состояние канала, оценивалось по частоте появления сигналов переспроса.

– число служебных элементов,

Далее определены границы производительности адаптивных систем при работе по данному каналу. Максимальное значение производительности адаптивной системы с изменением длины блока обеспечивает идеальная система, которая мгновенно и безошибочно определяет состояние канала и изменяет длину блока на оптимальную для новых условий. Нижний предел производительности адаптивных систем определяет система с фиксированной длиной блока, оптимизированной для данного канала. Найденные границы характеризуют потенциальный выигрыш, который может быть достигнут от применения адаптивной системы.

К основным факторам, снижающим производительность адаптивной системы, относится время, затрачиваемое на определение состояния канала, и ошибки определения данного состояния. Таким образом, встаёт задача выбора алгоритмов адаптации, которые позволят не только быстро определить новое состояние канала, но и минимизировать число ложных реакций системы (ошибочных изменений длины блока).

Далее предлагается методика масштабирования дискретного шага системы. Методика позволяет при моделировании использовать разную длину дискретного шага в состояниях (например,оптимальную длину блока).

Получены выражения, позволяющие пересчитывать значения вероятностей, приведённых к длине блока, в вероятности, приведённые к одинаковому шагу, в частности, к единичному элементу и обратно. Применение данной методики позволяет упростить модели и значительно сократить время имитационного моделирования. Кроме того, методика позволяет снизить требования к точности представления чисел в процессе моделирования, что в ряде случаев уменьшает погрешность вычислений.

Далее предлагается обобщённая методика оценки производительности системы передачи данных для различных адаптивных алгоритмов при работе по дискретному каналу с двумя состояниями. Данная методика учитывает время, затрачиваемое на определение состояния дискретного канала; возможные при оценке состояния ошибки; исходные вероятностные характеристики дискретного канала, отражающие процесс изменения его состояний.

. Смена состояний описывается марковской цепью с двумя состояниями и соответствующими переходными вероятностями. Показано, что в процессе работы адаптивной системы по каналу с двумя состояниями дополнительно возникают два промежуточных состояния.

. В данном случае поведение системы может быть описано марковской цепью с четырьмя состояниями и вероятностными переходами между ними, граф которой представлен на рис. 18.

Далее в главе определяются соотношения переходных вероятностей обобщённой модели и модели исходного дискретного канала, формируется матрица переходных вероятностей, выводятся выражения для финальных вероятностей системы.

, перед оценкой производительности системы необходимо привести шаг к единичному элементу. Для этого преобразования получены формулы:

– финальные вероятности, приведённые к единичному элементу.

Далее предложенная обобщённая методика используется для анализа различных адаптивных алгоритмов.

система увеличивает длину блока.

является поглощающим/

, происходит уменьшение длины. Граф работы системы в переходном режиме показан на рис. 19.

Рис 19. Граф работы алгоритма СОН в переходном режиме

при установившемся режиме может быть представлено графом (рис.20).

Рис 20. Граф работы алгоритма СОН в установившемся режиме

Для всех промежуточных невозвратных состояний существует три исхода:

Матрица переходных вероятностей для данного графа имеет вид

. Учитывая вероятности начальных состояний для установившегося режима, получим

Помимо установившегося. возможен переходный режим, с учётом которого общее выражение для определения средней длины промежуточного состояния Lb при отсутствии ограничения на время нахождения системы в состоянии S2 примет вид

Аналогичным образом получены выражения для средних длин оставшихся состояний, после чего определены переходные и финальные вероятности, а также производительность в соответствии с обобщённой моделью.

Далее разработаны аналитические модели для адаптивных алгоритмов: с оценкой успешных и ошибочных приёмов (ОУОП); с фиксированным периодом наблюдения (ФПН); с переменным периодом наблюдения (ППН); со скользящим окном наблюдения переменной длины (СОН-ПД).

Провед`нный анализ показал, что:

загрузка...