Delist.ru

Деформационное поведение в области микропластической деформации титана и сплава Ti-Al-V с ультрамелкозернистой структурой при различных видах термосилового воздействия (30.08.2007)

Автор: Кашин Олег Александрович

Анализ зависимостей от среднего размера зерен предела текучести ?0,2 при растяжении и напряжения течения в области микропластической деформации ?0,02 при квазистатическом изгибе титана ВТ1-0 после дорекристаллизационных отжигов показал, что они подчиняются уравнению Холла-Петча (рис. 6). Отклонения наблюдаются только для прокатанного ультрамелкозернистого титана, не подвергнутого дорекристаллизационному отжигу. Причем значения предела текучести для этого состояния значительно выше по сравнению с отожженным материалом, а напряжения течения в области микропластической деформации существенно ниже.

При циклическом нагружении образцов титана ВТ1-0 в крупнозернистом и ультрамелкозернистом состояниях зависимости величины микропластической деформации от числа циклов также оказались подобными (рис.7). Остаточная деформация с ростом числа циклов накапливается по логарифмическому закону, который нарушается только перед разрушением. Сопротивление микропластической деформации при циклическом нагружении гораздо выше для ультрамелкозернистого титана. Разрушение ультрамелкозернистого и крупнозернистого титана происходило только при максимальных напряжениях цикла выше макроскопического предела упругости.

Величина ограниченного предела выносливости на базе 106 циклов оказалась максимальной для прокатанного ультрамелкозернистого титана (таблица 1). Зависимость ограниченного предела выносливости от размера зерен подчиняется соотношению Холла-Петча, если для прокатанного ультрамелкозернистого титана взять значения предела выносливости после дорекристаллизационного отжига. Для неотожженного прокатанного ультрамелкозернистого титана значения предела выносливости выше.

Подобными оказались и зависимости накопления микропластической деформации при ползучести при комнатной температуре для крупнозернистого и ультрамелкозернистого титана, однако так же, как и при квазистатическом и циклическом нагружении, сопротивление микроползучести выше для ультрамелкозернистого состояния (рис. 8). Из приведенных зависимостей накопления микропластической деформации при ползучести и при квазистатическом нагружении следует, что как только напряжение превышает макроскопический предел упругости, так резко ускоряются процессы ползучести.

Таблица 1.Ограниченный предел выносливости титана ВТ1-0 после термомеханических обработок

Состояние Обработка Размер зерна d, мкм Ограниченный предел

В заключении раздела на основании полного подобия закономерностей развития микропластической деформации у крупнозернистого и ультрамелкозернистого титана при различных видах нагружения, анализа влияния термомеханических обработок и условий выполнения соотношения Холла-Петча сделан вывод о применимости развитой ранее модели микропластической деформации для титана с объёмной ультрамелкозернистой структурой.

Микропластическая деформация осуществляется за счёт генерации и движения свежих дислокаций. Повышение сопротивления микропластической деформации при формировании ультрамелкозернистой структуры обусловлено снижением эффективности концентраторов напряжений, обуславливающих переход к кооперативной пластической деформации зерен. При напряжении, превышающем величину макроскопического предела упругости, деформационные процессы резко интенсифицируются, и в этом смысле макроскопический предел упругости является критической характеристикой. Зная величину макроскопического предела упругости при квазистатическом нагружении, можно прогнозировать уровень безопасных рабочих напряжений для работы материала в условиях циклического нагружения и ползучести.

Раздел II посвящен изучению закономерностей деформационного поведения в области микропластической деформации титана с объемной ультрамелкозернистой структурой при повышенных температурах. Для выяснения влияния температуры на развитие деформационных процессов, связанных со структурой границ зерен, было проведено исследование температурной зависимости амплитуднонезависимого внутреннего трения.

Исследования температурной зависимости внутреннего трения показали, что формирование в титане ультрамелкозернистой структуры методами интенсивной пластической деформации при температурах 720–670 К приводит к смещению начала и интенсивного развития зернограничного внутреннего трения в область более низких температур (рис.9а). Увеличение несовершенства структуры границ зерен в крупнозернистом и ультрамелкозернистом титане путем прокатки при 295 К привело к тому, что температурные зависимости внутреннего трения для обеих структур оказались качественно одинаковыми (рис.9б). После изотермических отжигов деформированных прокаткой крупнозернистого и ультрамелкозернистого титана восходящая ветвь зернограничного пика внутреннего трения смещается постепенно в область более высоких температур и после прохождения рекристаллизации совпадает с таковой для исходного рекристаллизованного титана.

Для релаксационного процесса с одним временем релаксации пик внутреннего трения на его восходящей ветви описывается уравнением

– значение внутреннего трения при температуре максимума Тm; U – энергия активации; R– универсальная газовая постоянная.

от 1/T линейная, то есть внутреннее трение обусловлено одним релаксационным процессом. По восходящей ветви зернограничного пика были определены величины энергии активации зернограничного внутреннего трения (таблица 2). При обеих структурах (крупнозернистой и ультрамелкозернистой) энергия активации зернограничного внутреннего трения больше энергии активации зернограничной самодиффузии (массопереноса), соответствующей данному структурному состоянию, но меньше энергии активации объемной самодиффузии.

Таблица 2. Энергии активации внутреннего трения и самодиффузии крупнозернистого и ультрамелкозернистого титана (кДж/моль)

Крупнозернис-тый Ультрамелко-зернистый Крупнозернистый, прокатанный на 88% Ультрамелкозер-нистый, прокатанный на 88%

Зернограничная самодиффузия (массоперенос) 97 60 - -

Зернограничное внутреннее трение (зернограничное микропроскальзывание) 144±4 85±4 45±3 38±4

Объемная

самодиффузия 151/159 151/159 - -

?\???????

????·?является термоактивируемым процессом и обеспечивается тем же самым микромеханизмом, что и зернограничная диффузия. Внешнее напряжение вызывает направленное перемещение свободного объема в границах зерен из областей сжатия в области растяжения, обеспечивая взаимное смещение соседних зерен. При этом должна происходить перестройка структуры границы, приводящая к понижению энергии границы. Такая перестройка структуры границы может происходить путем диффузионного притока вещества из объема зерна (из приграничной области) или оттока из границы в объем зерна. Формирование ультрамелкозернистой структуры в титане приводит к снижению энергии активации зернограничной самодиффузии, и зернограничное микропроскальзывание реализуется при более низких температурах по сравнению с крупнозернистым материалом. Холодная пластическая деформация ультрамелкозернистого и крупнозернистого титана приводит к увеличению степени неравновесности границ зерен, то есть к повышению их энергии, вследствие чего уменьшается энергия активации зернограничной самодиффузии. Наряду с этим во всех зернах образуются неравновесные вакансии, что, как известно, приводит к уменьшению энергии активации объемной диффузии. Таким образом, после глубокой пластической деформации ультрамелкозернистого и крупнозернистого титана при Т/Тпл?0,15 (Тпл – температура плавления) энергия активации истинного зернограничного проскальзывания уменьшается вследствие уменьшения энергии активации зернограничной и объемной диффузии.

Изменение микроструктуры титана в результате глубокой пластической деформации прокаткой приводит и к более сильной температурной зависимости напряжений течения в области микропластической деформации при квазистатическом нагружении. Для титана с ультрамелкозернистой структурой, полученной в результате интенсивной пластической деформации, при повышении температуры испытания до 573 К наблюдается слабое уменьшение сопротивления микропластической деформации, при температурах выше 573 К наблюдается резкое усиление температурной зависимости сопротивления микродеформации (рис. 10, кривая 1).

После прокатки крупнозернистого и ультрамелкозернистого титана резкое усиление температурной зависимости сопротивления микропластической деформации наблюдается во всем исследованном интервале температур 295-673 К, причем для прокатанного ультрамелкозернистого титана зависимость более сильная (рис. 10, кривые 2 и 3).

Слабая температурная зависимость сопротивления микропластической деформации ультрамелкозернистого титана в интервале температур от 295 К до 573 К обусловлена сравнительно высокой термической стабильностью зеренно-субзеренной структуры. Холодная прокатка ультрамелкозернистого и крупнозернистого титана приводит к образованию незаблокированных дислокаций и неравновесных вакансий, что активирует процессы структурной перестройки при внешнем термосиловом воздействии и обеспечивает более интенсивное уменьшение сопротивления микропластической деформации с ростом температуры испытания.

В разделе III приведены результаты сопоставительного исследования деформационного поведения в области микропластической деформации двухфазного ?+? титанового сплава Ti-Al-V (ВТ6) в крупнозернистом и ультрамелкозернистом состояниях. В результате интенсивной пластической деформации двухфазная структура сплава ВТ6 сохраняется, причем сохраняется также и количественное соотношение фаз. При оптимальных технологических режимах интенсивной пластической деформации средний размер зерен составляет около 0,5 мкм. Показано, что основные закономерности микропластической деформации при различных видах нагружения ультрамелкозернистого сплава ВТ6 подобны таковым для нелегированного титана. При формировании ультрамелкозернистой структуры методами интенсивной пластической деформации в сплаве ВТ6 повышается сопротивление микропластической деформации (рис. 11).

Напряжение течения на второй стадии микропластической деформации и величина ограниченного предела выносливости возрастает с уменьшением размера зерен в соответствии с уравнением Холла-Петча (рис. 12). При уменьшении среднего размера зерен от 600 до 0,5 мкм предел выносливости увеличивается в 1,5 раза.

При циклическом нагружении и при ползучести при напряжениях выше макроскопического предела упругости (напряжение перехода от первой ко второй стадии микропластической деформации) происходит резкое увеличение скорости накопления микропластической деформации при циклическом нагружении и установившейся ползучести. Таким образом, и для сплава ВТ6 макроскопический предел упругости является критическим напряжением при крупнозернистой и ультрамелкозернистой структурах.

Измельчение зеренно-субзеренной структуры при интенсивной пластической деформации при высоких температурах приводит к понижению примерно на 100 К температуры начала интенсивного роста зернограничного внутреннего трения. Эти данные дают основание предположить, что наблюдаемое в ряде работ снижение температуры реализации сверхпластической деформации при формировании ультрамелкозернистой структуры в сплаве ВТ6 обусловлено развитием зернограничного микропроскальзывания при более низких температурах, чем при крупнозернистой структуре.

При температурах ниже температуры интенсивной пластической деформации ультрамелкозернистая структура сплава ВТ6 является термически стабильной. Деградация микроструктуры наблюдается лишь при изотермических отжигах выше температур заключительного этапа интенсивной пластической деформации.

Таким образом, и для двухфазного ?+? сплава ВТ6 с ультрамелкозернистой структурой основные закономерности деформационного поведения в области микродеформации подобны таковым для крупнозернистого сплава ВТ6. Формирование ультрамелкозернистой структуры в сплаве ВТ6 приводит к повышению сопротивления микродеформации при квазистатическом и циклическом изгибе и микроползучести.

В разделе IV приведены результаты исследований влияния модификации поверхности методами деформации поверхности, ионной имплантации, ионного азотирования, электроискрового легирования на деформационное поведение в области микродеформации и механические свойства ультрамелкозернистого титана ВТ1-0.

Установлено, что в результате поверхностного деформирования как крупнозернистого, так и ультрамелкозернистого титана методом ультразвуковой финишной обработки в поверхностных слоях формируется структура, аналогичная таковой, получающейся в результате интенсивной пластической деформации и последующей холодной прокатки (рис.13). Формирование ультрамелкозернистой структуры только в поверхностных слоях привело к повышению прочностных и усталостных свойств крупнозернистого титана. Сочетание интенсивной пластической деформации, прокатки на высокие степени деформации и поверхностного деформирования с последующей термообработкой позволило достичь максимальных значений микротвердости, повысить сопротивление микродеформации при квазистатическом и циклическом нагружениях. При этом прочностные и усталостные характеристики оказались на том же уровне, что и для прокатанного и отожженого ультрамелкозернистого титана.

При модификации поверхности методом высокодозной ионной имплантации как крупнозернистого, так и ультрамелкозернистого титана в поверхностном слое толщиной не более 200 нм формируются мелкодисперсные выделения фаз внедрения размером 10-20 нм. При ионной имплантации ультрамелкозернистого титана сохраняется ультрамелкозернистая структура в объеме материала. Повышается сопротивление микропластической деформации крупнозернистого и деформированного прокаткой ультрамелкозернистого титана при квазистатическом (рис. 14) и циклическом нагружении. Влияние ионной имплантации на деформационное поведение ультрамелкозернистого титана в области микропластической деформации аналогично влиянию дорекристаллизационных отжигов.

Ионное азотирование титана и его сплавов используют для повышения износостойкости. При формировании в титане ультрамелкозернистой структуры в нем диффузионные процессы начинают интенсивно развиваться при более низких температурах по сравнению с крупнозернистым материалом. Поэтому были основания предполагать, что ионное азотирование титана может быть реализовано при температурах, не превышающих температуры начала рекристаллизации ультрамелкозернистого титана. Эксперименты показали, что азотирование титана даже в ультрамелкозернистом состоянии начинается только при температурах 820 - 870 К, то есть значительно выше температуры рекристаллизации ультрамелкозернистого титана. При этих условиях формировался ультрамелкозернистый азотированный слой толщиной около 20 мкм с повышенной микротвердостью (до 14 ГПа), причем на поверхности наблюдалось образование тонкой пленки (~1 мкм) из нитрида титана.

Отличительной особенностью диаграмм нагружения при квазистатическом изгибе в области микродеформации титана ВТ1-0 после ионного азотирования (рис. 15) является значительный разброс от образца к образцу и скачкообразный характер накопления микродеформации при повышении напряжения, что связано с образованием микротрещин в покрытии.

Аналогичный характер развития микродеформации наблюдали и при цементации поверхности ультрамелкозернистого титана методом электроискрового легирования с использованием графитового электрода (рис. 16). Этот метод позволяет осуществить насыщение поверхности титана углеродом без деградации ультрамелкозернистой структуры. При этом в поверхностном слое происходит быстрая закалка расплавленного материала, что способствует формированию ультрамелкозернистой структуры в электроискровых покрытиях.

Использованные в работе способы модификации поверхности приводят к диспергированию структуры поверхностных слоев титана за счет измельчения зеренной структуры и/или формирования ультрадисперсных частиц, что обеспечивает повышение микротвердости и сопротивления микропластической деформации. При всех использованных методах поверхностной обработки, за исключением метода ионного азотирования, удается сохранить объемную ультрамелкозернистую структуру титана, полученную интенсивной пластической деформацией. Исследования закономерностей микропластической деформации материалов с малопластичными поверхностными слоями позволяют уже на ранней стадии нагружения выявить начало появления в покрытии трещин и определить безопасные уровни напряжений и условий эксплуатации таких материалов.

В Приложениях приведены примеры использования полученных в работе результатов для разработки способов улучшения эксплуатационных свойств изделий и инструмента из конструкционных сталей 65Х13 и 9ХФМ и композиционного материала с металлической матрицей, армированной непрерывными углеродными волокнами. Путем формирования ультрамелкозернистых градиентных электроискровых покрытий получено повышение стойкости стального дереворежущего и медицинского инструмента в 3-5 раз. Разработаны композиционные электроды на основе интерметаллида Ni3Al, армированного неметаллическими частицами, что позволило использовать метод электроискрового легирования для восстановления геометрических размеров изношенных деталей с величиной износа до 0,3 мм. С использованием метода ионного азотирования удалось повысить стойкость ножей для резки химических волокон и хирургических скальпелей в 2-6 раз по сравнению с зарубежными аналогами. Предварительное нанесение на углеродные волокна ультрамелкозернистого пироуглеродного покрытия позволило изменить механизм разрушения и повысить прочность композиционных материалов металл - углеродные волокна. Представлены копии актов производственных испытаний оборудования и инструментов, разработанных в настоящей работе.

Основные выводы

Выполнен комплекс экспериментальных исследований микроструктуры и деформационного поведения в области микродеформации при квазистатическом и циклическом нагружении и при ползучести титана и сплава ВТ6 с крупнозернистой структурой и с объемной ультрамелкозернистой структурой, сформированной методами интенсивной пластической деформации. Показано, что закономерности накопления микропластической деформации при различных видах нагружении титана технической чистоты и сплава ВТ6 качественно подобны для материалов с крупнозернистой и объемной ультрамелкозернистой структурой. При обеих зеренных структурах при квазистатическом нагружении микропластическая деформация развивается в две стадии; на первой стадии связь между напряжением и степенью микропластической деформации линейная, на второй – параболическая. При циклическом нагружении и микроползучести при комнатной температуре накопление микропластической деформации происходит по логарифмическому закону.

загрузка...