Delist.ru

Защита и восстановление энергопотребляющих природно-технических систем в строительном комплексе и ЖКХ на примере Приморского края (30.08.2007)

Автор: Загинайлов Владимир Ильич

N – количество однотипных комплектов в камере дозревания.

запишем

, град. (3)

) с учетом выражений для переменных, приведенных в формуле (3) и в алгоритме, изображенном на рис. 13, рассчитывали по формуле

), равных циклу формования изделий (1; 1,5 и 2 часа), при температуре в камере дозревания 50 оС и 60 оС и среды цеха 15 оС и 20 оС.

) рассчитывали в функции градусочасов [аргумент

( = tб( ] по методике ВНИИжелезобетон. В связи с тем, что температура изделий, рассчитываемая по формуле (2), является функцией экзотермии, которая,

Рис. 13. Алгоритм решения нестационарного уравнения теплового баланса

системы «камера дозревания – изделия» на кассетно-конвейерной линии *)

_________________________________

*) Выделены зависимости, предложенные автором диссертации

) в интервале (??i) значение температуры изделия принималось равным температуре в интервале (?i-1).

Если найденное по формулам (2) и (3) значение температуры изделия для интервала (?i) превышало температуру в интервале (??i-1) не более, чем на 3 оС, то расчет продолжался. В противном случае интервал (??i) уменьшался.

Динамика расчётной температуры изделия подтверждена экспериментально и соответствует требованиям ОНТП – 07-85 Минпромстройматериалов СССР по скорости разогрева, предельной температуре нагрева и остывания, рис. 14.

Рис. 14. Прогрев изделия в камере дозревания

кассетно-конвейерной линии

1-9 – температура в объеме изделия; 10 – температура цеха;

–(–(– – расчетная температурная кривая.

Степень использования экзотермии достигает 94%, а удельное теплопотребление составило 200-235 МДж/м3 при норме для обычных кассет 335-400 МДж/м3.

Отсюда следует, что доля полезного использования экзотермии в новом тепловом процессе составляет от 38,4% до 38,8% при 24,2% до 29,6%, характерных для теплового режима обычных кассет. То есть имеет место рост полезного использования внутреннего теплового потенциала системы на 8,8 – 14,6%.

Решению задачи способствовал системный подход: отказ от выдерживания изделий перед разогревом; разогрев до 50-55 оС за 2 часа; равномерность разогрева за счет струйной активизации теплоотдачи пара аппаратами, рассчитанными с учетом рабочих параметров формующего агрегата; тепловая защита теплоотдающих поверхностей камеры дозревания стационарными воздушными рубашками (АС № 1183492); применение теплоизолирующих штор на входном и выходном проемах камеры дозревания (АС № 1207776); оптимизация времени пребывания изделий в камере, обеспечивающего их конечную температуру не более 60 оС.

Как показали испытания, новые устройства и тепловой режим обеспечивают минимизацию удельного теплопотребления при установленном качестве бетона: прочность кубов-образцов на сжатие спустя 24 ч после тепловой обработки составляла 59,5% от проектной класса В 15 (М 200), а в 28-суточном возрасте – 120% при прочности образцов 28-суточного нормального хранения 116% от проектной; прочность на осевое растяжение при изгибе – 1,33 МПа при нормативном сопротивлении 1,17 МПа, призменная прочность (Rпр) - 13,8 МПа при нормативе 11,0 МПа, а начальный модуль упругости (Еб) - 200350-22850 МПа при нормативе 20500 МПа (СНиП 2.03.01-84).

Новые технологии, оборудование и способы тепловой обработки, приведенные в пп. а-д, стимулируют более полное использование внутренней теплоты систем «камера – изделия», за счет чего снижают удельное теплопотребление в 1,7-2,0 раза и увеличивают оборачиваемость формующих агрегатов в 1,17-2,6 раза в сравнении с аналогичными технологиями в обычных условиях эксплуатации.

Для прогноза предотвращения образования загрязняющих веществ за счёт эксплуатации разработанных автором 5 видов энергосберегающего оборудования и 4 технологий на заводах стройиндустрии Приморского края приняты допущения:

- доля этих технологий в выпуске изделий для крупнопанельного домостроения сохранилась на уровне 1990-1995 гг. (75-80%);

- потенциал энергосбережения на четырёх заводах ЖБИ, подключенных к тепловым сетям электростанций, сохранился на уровне 441,1 тыс. Гкал/год;

- потребление топлива электростанциями соответствует уровню 2002 г.

С учетом этих допущений природоохранная эффективность оценивается предотвращением образования загрязняющих веществ от сжигания топлив на электростанциях ВТЭЦ-2 и АртемТЭЦ в среднем на 4,56-4,77% (суммарно 31,8 тыс. т).

основные результаты и ВЫВОДЫ

1. На основе установленных при выполнении работы закономерностей функционирования энергопотребляющих природно-технических систем в строительном комплексе и ЖКХ развиты представления о механизмах исследования и модернизации таких систем в течение всего их жизненного цикла. Разработаны и предложены системный подход и методы изучения, оценки состояния, защиты, восстановления и рационального использования топливно-энергетических ресурсов энергопотребляющих природно-технических систем в строительном комплексе и ЖКХ, позволяющие существенно (на 21,9 – 29,8%) снизить потребление топлива в Приморском крае за счет:

- организации мониторинга и диагностики, направленных на выявление доли участия нерационального и неэффективного использования топливно-энергетичес-ких ресурсов в загрязнении природной среды. Сжигание топлива для компенсации сверхнормативных потерь энергоресурсов в региональной энергопотребляющей природно-технической системе в 1999-2003 гг. (2,1-3,32 млн. тут) сопровождалось ростом образования основных загрязняющих веществ (СО, SO2, NOх, золошлаковых отходов) в 1,44-1,9 раза по отношению к 1999 г.;

- повышения эффективности управления на основе организации взаимодействия производителя и потребителей энергоресурсов как взаимодополняющих компонентов процесса энергоснабжения-энергопотребления в составе синергетических систем, эффективное функционирование которых невозможно без взаимной координации согласованных действий, направленных на развитие заинтересованности производителей энергоресурсов в благополучии потребителей, а потребителей – в работоспособности энергоисточников;

- системного подхода к защите, восстановлению и повышению экологической безопасности регионального ЖКХ на основе усиления тепловой защиты и рационального управления энергопотреблением зданий жилого фонда, эффективных распределительных сетей и энергоисточников, использующих нетрадиционные и возобновляемые виды энергии. Такой подход позволяет исключить ежегодное потребление более 890 тыс. т угля и предотвратить образование загрязняющих веществ по отношению к 2002 г. на 4,05-10,89% (123,6 тыс. т);

- создания стационарных воздушных тепловых рубашек для агрегатов тепловой обработки изделий из бетона и железобетона, позволивших за счет снижения потерь в среду цеха в среднем на 47,4% повысить на кассетно-конвейерной линии полезное использование внутренней энергии твердеющей системы (экзотермии цемента) до 38,4-38,8% от общего теплопотребления за процесс против 24,2-29,6% в обычных кассетах. Вследствие этого было снижено потребление топлива и предотвращено образование СО, SO2, NOх, золы на 34,6 - 74,2% в пересчете на 1 м3 изделий.

В камерах периодического действия применение стационарных воздушных тепловых рубашек позволило снизить удельное теплопотребление на 23% против норм, установленных СН 513-79, в т. ч. за счет более полной утилизации теплоты ограждений камеры и прогретых изделий, позволившей повысить оборачиваемость камер в 1,17 раза.

Массовое применение разработанных автором диссертации новых устройств и способов (защищены семью авторскими свидетельствами и патентами) тепловой обработки изделий на заводах Приморского края позволит предотвратить образование основных загрязняющих веществ (СО, SO2, NOх, золы) на электростанциях ВТЭЦ-2 и АртемТЭЦ на 4,56-4,77%;

- формирования новых производств для утилизации отходов техногенного происхождения и создания на их основе комбинированных альтернативных энергоисточников, совокупность которых позволяет существенно повысить экологическую безопасность энергопотребляющих природно-технических систем.

Восстановление депрессивной островной энергопотребляющей природно-тех-нической системы Рейнеке за счет строительства энергоэффективных зданий и комбинированного энергоисточника, на основе ветрогенератора и аккумуляторных батарей, подпитываемых от микротурбин, работающих на биогазе, выработанном из бытовых отходов, с использованием для отопления зданий гео- или гидротермальных тепловых насосов и солнечных коллекторов предотвратит ежегодное сжигание на электростанциях более 940 т Приморских углей и образование загрязняющих веществ на 207,7 т/год.

Переработка отходов трех птицефабрик (куриный помет до 450 т ежесуточно) электрометодами с использованием когенерированной в местных котельных электроэнергии и энергии Солнца исключает потребность в складировании наиболее опасных (заражение сальмонеллами) отходов и предотвратит ежегодное сжигание на электростанциях более 107 тыс. т углей с образованием загрязняющих веществ в количестве 38,65 тыс. т/год.

2. Алгоритм решения уравнения теплового баланса теплопотребляющих агрегатов, устройств и сооружений, последовательно учитывающий долю нестационарных потерь, зависящих от факторов, связанных с внутренними процессами систем, и параметров окружающей среды, позволяет найти конструктивные и эксплуатационные параметры, при которых не требуется привлечение внешних дополнительных источников энергии вследствие более полного и эффективного использования внутренней энергии самой системы.

загрузка...