Delist.ru

Изменение состояния семян при их хранении, проращивании и под действием внешних факторов (ионизирующего излучения в малых дозах и других слабых воздействий), определяемое методом замедленной люминесценции (25.12.2007)

Автор: Веселова Татьяна Владимировна

На защиту выносятся следующие положения:

1. Изменение всхожести семян под влиянием ионизирующего излучения, тепловой обработки, и других физических факторов (озвучивание, механические воздействия, лазерное облучение, электрические и магнитные поля) является неспецифическим ответом, который определяется, в основном, процессами, происходящими в сухих семенах до проращивания.

2. Кратковременная стимуляция всхожести семян под влиянием физических факторов разной природы обусловлена ускорением процесса естественного старения (накопления повреждений).

Научная новизна работы. Впервые показано, что при помощи регистрации фосфоресценции при комнатной температуре (ФКТ) у воздушно-сухих семян до проращивания можно прогнозировать изменение всхожести после предпосевной обработки факторами различной природы в малых дозах (тепловое, ионизирующее излучение, акустическое воздействие, электрическое поле коронного разряда, комбинированное магнитное поле, лазерное излучение).

Измерение уровня ФКТ индивидуальных сухих семян (злаковых, бобовых, огурцов, сосны) и анализ распределения семян по уровню ФКТ впервые позволило разделять партии воздушно-сухих семян пониженной всхожести на три дискретных фракции, отличающихся по качеству.

Повышение всхожести партии можно прогнозировать по распределению сухих семян по ФКТ, если воздействие вызывает увеличение доли семян во фракции I (всхожих) за счет их перехода из фракции II (живых, но невсхожих).

Причиной стимуляции всхожести семян бобовых низкого качества после ?-облучения и других воздействий в малых дозах является модификация клеточных мембран, которая сопровождается замедлением поступления воды в клетки при набухании.

Впервые показано, что, регистрируя фосфоресценцию эндогенных порфиринов у набухающих семян можно оценивать уровень дефицита кислорода под семенной оболочкой.

Нарушение процесса деления у ненормальных проростков было следствием пост-гипоксического окислительного стресса после проклевывания семян. При доступе воздуха к зародышу после гипоксии наблюдали образование активных форм кислорода, в основном, Н2О2, при аэрации семян после гипоксии наблюдали хемилюминесцентным методом в присутствии люминола. Отсутствие гипоксии у семян, из которых вырастают нормальные проростки, обусловлено их более медленным набуханием, при котором потребление кислорода при дыхании зародыша компенсируется его диффузией через оболочку семена.

4С) показал, что у семян фракции II торможение репликации ДНК совпадает во времени с возрастанием количества Н2О2.

Практическое значение работы.

Разработан экспрессный метод, основанный на явлении фосфоресценции при комнатной температуре (ФКТ), для определения такого важного показателя качества семян как влажность (А.с. № 1047431, 1981). Метод позволяет оценить разницу во влажности образцов в 0,1-0,2% у семян и биопрепаратов (муки, крупы, конидий и др.) при содержании в них воды от 4 до 20% от сырого веса.

Регистрация ФКТ индивидуальных воздушно-сухих семян позволяет характеризовать гетерогенность партии семян по влажности. Метод может быть рекомендован для выделения из партии ослабленных и мертвых семян.

С помощью метода ФКТ можно наблюдать последействие факторов разной природы на воздушно-сухие семена до их проращивания и контролировать жизнеспособность семян (А.с. № 1131488, 1982).

Разработан метод выделения из партии элитных семян огурцов семян, имеющих высокую потенциальную продуктивность (максимальный урожай) (А.с. № 1570681, 1988).

Разработан метод контроля гипоксии у прорастающих семян, основанный на регистрации фосфоресценции эндогенных порфиринов. Показано, что набухание семян в присутствии антиоксидантов (например, пропилгаллата) уменьшает повреждение зародыша при пост-гипоксическом окислительном стрессе и увеличивает всхожесть семян.

Апробация работы

Материалы диссертации доложены на: Межфакультетской научно-практической конференции “МГУ – сельскому хозяйству”, 1982 (Москва); отчете по программе сотрудничества стран-членов СЭВ и СФРЮ по проблеме исследования в области биологической физики, 1984 (Пущино), Первой республиканской конференции по биофизике Молдавии, 1984 (Кишинев); Всесоюзном научном совещании “Люминесцентные методы исследования в сельском хозяйстве и перерабатывающей промышленности”, 1985 (Минск); Всесоюзном симпозиуме “Биохемилюминесценция в медицине и сельском хозяйстве”, 1986 (Ташкент); Всесоюзной конференции по биотехнологии злаковых культур, 1988 (Алма-Ата); Всесоюзном симпозиуме “Физиология семян”, 1988 (Душанбе); Всесоюзной конференции “Измерительная и вычислительная техника в управлении производственными процессами в АПК”, 1988 (Ленинград); Симпозиуме Интернациональной ассоциации по тестированию семян “Технологический прогресс и исследования семян”, 1994 (Вагенинген, Голландия); III съезде общества физиологов России “Физико-химические проблемы физиологии растений”, 1996 (Пенза); II Международном научно-практическом симпозиуме по селекции и семеноводству, 1997 (Аранжелович, Югославия); Международной школе “Проблемы теоретической биофизики”, 1999 (Москва); II Съезде Биофизиков России, Москва, мгу, 1999; IV съезде общества физиологов растений России “Физиология растений – наука III тысячелетия”, 1999 (Москва); Международной научно-практической конференции «Семя», 1999 (Москва); Школе-конференции “Горизонты физико-химической биологии”, 2000 (Пущино-на-Оке); Международной конференции “Растения под стрессом окружающей среды”, 2001 (Москва); V конференции “Кислород, свободные радикалы и окислительный стресс у растений”, 2001 (Ницца, Франция); VII международном рабочем совещании по семенам, 2002 (Саламанка, Испания); Международной конференции “Семена древесных”, 2002 (Ханья, Греция); Международном рабочем совещании “Новые достижения в улучшении качества семян”, 2003 (Лодзь, Польша).

Публикации. По материалам диссертации опубликовано в 46 печатных работах, в том числе: 2 монографии, 17 статей в журналах из списка ВАК, 7 работ в рецензируемых журналах, 4 авторских свидетельства, 7 статей в сборниках, и 10 тезисов.

Структура и объем диссертации

Диссертация изложена на ___ стр. машинописного текста. Состоит из введения, обзора литературы (глава I), описания объектов и методов исследования (как стандартных, так и разработка новых) (глава II), изложения полученных результатов (глава III), их обсуждения (глава -IV) выводов, списка литературы и приложения. Текст иллюстрирован 18 таблицами и 75 рисунками. Список литературы включает 159 отечественных и 271 зарубежных работ.

СОДЕРЖАНИЕ РАБОТЫ

Во введении дано обоснование актуальности выбранной темы в связи с имеющимися на сегодняшний день исследованиями по стимуляции жизнедеятельности растений после действия ионизирующего излучения в малых дозах и действия других факторов. Сформулированы цели и задачи исследования.

В обзоре литературы (глава I), состоящем из четырех разделов, представлен обзор данных о радиостимуляции, предполагаемых механизмах повышения всхожести семян под влиянием различных факторов, возможных механизмах потери всхожести семенами при старении. Обсуждается взаимосвязь между состоянием мембран семян и их всхожестью. Дан обзор методов, которые можно использовать для индивидуальной оценки качества семян.

II. Объекты и методы исследования

II.1. Объекты. Большая часть исследования проведена на семенах гороха (‘Немчиновский-85 и др.) и сои (‘Букурия’ и др.). Кроме того, в работе использовали семена пшеницы, ржи, ячменя (‘Рядовой’), огурцов (‘Московский тепличный’), перца, подсолнечника, кукурузы, фасоли и сосны.

II.2. Всхожесть семян определяли стандартным способом (правила ISTA – Международной ассоциации оценки качества семян, 1996). Под всхожестью партии понимают процент семян, из которых вырастают нормальные проростки. Не прорастающие семена и семена, из которых вырастают проростки с морфологическими дефектами, считаются невсхожими.

II.3. Выход электролитов из семян измеряли после 1,5 ч экспонирования индивидуального семени в 2 мл дистиллированной воды. Электропроводность среды определяли бесконтактным методом при помощи Oscillotitrator OK-302.

II.3. Действующие факторы:

II.3.1. Семена гороха подвергали воздействию ??излучения в Объединенном институте ядерных исследований (Дубна) на установке ROKUS-M при мощности дозы 0,913 Гр/мин на расстоянии 75 см от источника. Дозу подбирали, варьируя время облучения (1 Гр – 65,78 с). Для облучения семян в дозе 190 мГр использовали источник ?-квантов 60Со (Е37) P0=0.362 Р/час/м (мощность дозы облучения – 5,7 мГр/час, расстояние 80 см, время облучения – 1/3 часа). Были выбраны 3 уровня доз: сверхмалая доза 190 мГр (использована для выявления ранних цитогенетических эффектов [Корогодина и др., 2004]), стимулирующие дозы для наблюдения радиационного гормезиса 3-10 Гр, и летальная доза 100 Гр.

II.3.2. Тепловую обработку семян проводили двумя способами. 1. Прогревание при 400С и 85% относительной влажности воздуха (так называемое «ускоренное старение»). 2. Прогревание при 40ОС герметично упакованных семян, влажность которых предварительно была увеличена до фиксированного значения («контролируемое повреждение»).

II.3.3. Лазерное облучение элитных семян огурцов проводили на вращающемся зеркальном диске в сухом затемненном помещении при температуре 20-250С. Использовали гелий-неоновый лазер ЛГ-75 (?=632,5 плотностью мощ-ности 0,3 мВт/см2) дозами 100-150 импульсов (1 импульс 50 мкДж/см2). (Облучен-ные семена были предоставлены Р.С.Бахтияровым).

II.3.4. Звуковую обработку выборки семян ячменя (от 100 до 500 шт) про-водили в чашке Петри в течение 5 минут с помощью источника акустических волн (Звуковой генератор) мощностью 65 дБел с регулируемой частотой (с точностью 1 Гц). (Озвученные семена были предоставлены В.В.Егоровым).

II.3.5. Семена овса, подвергнутые светоимпульсному облучению (0,5 с, 50 МВт), и семена пшеницы после обработки электрическим полем коронного раз-ряда (0,5 с, 2кВт/см2) с целью повышения их всхожести были получены из Всесо-юзного НИИ экспериментальной физики (г. Саров).

II.4. Влажность семян определяли весовым способом по правилам ISTA [1996]. Сухие семена размалывали, быстро формировали из муки семян три навески по ~5 г и помещали в сушильный шкаф с 1050С на 3-5 часов до достижения постоянного веса. В дальнейшем закрытые бюксы с семенами охлаждали при комнатной температуре. После остывания семена взвешивали и рассчитывали влажность, как изменение веса после подсушивания, отнесенное к исходному весу.

II.5. Поглощение кислорода индивидуальными семенами или выделенными зародышевыми осями определяли полярографически при 20ОС электродом типа Кларка Электрод E5047, фирмы Radiometer A/S Denmark. Диаметр платинового электрода 20 мкм. Зародышевые оси инкубировали в камере с водой объемом 60 мкл. После того, как при дыхании зародыша или зародышевых соей концентрация кислорода в воде снижалась до нуля, камеру вновь заполняли водой и регистрировали дыхание. Процедуру повторяли 4-4 раза.

II.6. Анализ содержания ядерной ДНК проводили стандартным методом [Redfearn et al., 1995] в нашей модификации. Для анализа 2-мм отрезки апикальной части зародышевой оси растирали в буфере для выделения (0,2 М маннит, 10 мМ Мес-буфер, 10 мМ NaCl, 10 мM спермин-тетрагидрохлорид, 2,5 мМ Na2-ЭДТА, 0,05 об/об Тритон Х-100, рН 5,8). В суспензию добавляли 10 мкл 5 мг/мл этидиум бромида – специфического флуоресцентного (ФЛ) красителя ДНК, уровень ФЛ которого пропорционален количеству ДНК в клетке (2С, 4С, 8С). ФЛ регистрировали на микрофлуорометрическом анализаторе. 10 мкл суспензии помещали на предметное стекло люминесцентного микроскопа (ЛЮМАМ 13) с видеокамерой (QX3, Intel, США). Сигнал анализировали с помощью компьютерной программы, разработанной С.В.Гальчуком и В.Б.Туровецким. Интенсивность ФЛ измеряли у 600-800 ядер (25-80 ядер на каждом стекле) для каждой экспериментальной точки.

II.7. Определение состояния ДНК. Пятнадцать пятимиллиметровых кончиков зародышевых осей размалывали в жидком азоте с лизирующим раствором (50 мМ Трис-HCl буфер (рН 7,5), 25 мМ ЭДТА, 1% СДС). Смесь инкубировали 30 минут при комнатной температуре. После добавления NaCl до 1 М концентрации смесь была депротеинизирована встряхиванием с хлороформ/спиртовым раствором (10/1 об/об). После центрифугирования в течение 10 минут при 5000 g, ДНК была выделена из жидкой фазы добавлением тройного объема этанола (96%) и растворена в 50 мМ Трис-HCl-буфере (рН 7,5), содержащем 25 мМ ЭДТА. Образцы ДНК были обработаны рибонуклеазой А, не содержащей ДНКазы (50 мкМ/мл) в течение 20 мин при 370С и затем ДНК снова осаждена добавлением тройного объема этанола (96%). Одинаковые объемы изолированной и очищенной ДНК были электрофоретически разделены в течение 2 часов в 1,2% агарозном геле при напряжении 2,3 В/см в 0,09 М Трис-боратном буфере (рН 8,3), содержащем 0,5 мкМ/мл этидиум бромида (эту работу проводили совместно с лабораторией чл-корр. Б.Ф. Ванюшина, НИИ физико-химической биологии им. А.Н. Белозерского, МГУ).

II.8. Хемилюминесценцию эмбриональных осей семян гороха измеряли в присутствии 5.10-5М хемилюминесцентного индикатора люминола. Свечение регистрировали на хемилюминометре с одноэлектронным счетом фотонов. Сигнал от фотоумножителя (ФЭУ-85), чувствительного в видимой области спектра, поступал на усилитель, а затем на самописец. Образцы во время измерения находились в термостатируемой камере. Растворы каталазы (2000 U/мг, Сигма, США) и антиоксидантов (пропилгаллат [10-4М] и ?-меркаптоэтиламина [10-3М] использовали в качестве ингибиторов активных форм кислорода.

II.9. Термохемилюминесценцию регистрировали на этом же хемилюминометре, сигнал с которого поступал на компьютер.

загрузка...