Delist.ru

Моделирование ветрового волнения. Численные расчеты для исследования климата и проектирования гидротехнических сооружений (25.12.2006)

Автор: Кабатченко Илья Михайлович

(РОСГИДРОМЕТ)

Государственное учреждение

«Государственный океанографический институт»

(ГУ «ГОИН»)

На правах рукописи

КАБАТЧЕНКО ИЛЬЯ МИХАЙЛОВИЧ

Моделирование ветрового волнения. Численные расчеты для исследования климата и проектирования гидротехнических сооружений

Специальность: 25.00.28 - океанология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора географических наук

Москва 2006

Работа выполнена в Государственном Учреждении «Государственный океанографический институт» (ГУ «ГОИН») РОСГИДРОМЕТА.

Научный консультант – доктор физико-математических наук,

академик РАН В.Е. Захаров

Официальные оппоненты:

Доктор физико-математических наук К. В. Показеев

Доктор физико-математических наук С. Ю. Кузнецов

Доктор технических наук Г. И. Литвиненко

Ведущая организация - Московский Государственный Строительный Университет

Защита состоится « » 2007 г. в « » часов на заседании Диссертационного совета Д002.239.02 по присуждению ученой степени доктора наук в Институте океанологии им. П.П.Ширшова РАН по адресу: 117851, Москва, Нахимовский пр., 36.

С диссертацией можно ознакомиться в научной библиотеке Института океанологии им. П.П.Ширшова РАН.

Автореферат разослан « » 2007 г.

Ученый секретарь

Диссертационного совета,

кандидат географических наук

С.Г.Панфилова

Общая характеристика работы

Диссертация посвящена разработке компьютерной технологии расчета полей ветрового волнения и исследованию на основе полученных результатов климатических характеристик ветрового волнения морских акваторий. Входной информацией для этой технологии являются приповерхностные поля ветра. Основные требования, которые предъявляются к технологии:

выходная информация включает в себя наиболее полный набор вероятностных характеристик ветрового волнения, в том числе и направленный спектр;

физическая модель, используемая для разработки технологии, соответствует современной теории генерации и распространения ветровых волн;

эксплуатационные свойства модели – прежде всего скорость вычисления – позволяют использовать ее для прогноза ветрового волнения и анализа климата ветрового волнения на современном парке вычислительной техники, включая персональные компьютеры.

Точность расчета полей ветрового волнения с использованием данной технологии подтверждена по сравнительным данным нескольких натурных экспериментов в Северной Атлантике, Черном и Балтийском морях. Современная теоретическая обоснованность используемой технологии и подтвержденная в сравнительных экспериментах точность расчетов позволили получить новые сведения о пространственно-временной изменчивости волнового климата Балтийского, Черного, Каспийского, Японского, Карского и Баренцева морей. Для всех расчетных регионов получены оценки экстремальных высот волн и выявлены тенденции в изменении волнового климата в эпоху антропогенного потепления.

Актуальность темы

Последние десятилетия характеризуются более интенсивным включением открытых и прибрежных районов морей и океанов в сферу хозяйственной деятельности человека. При этом меняется структура этой деятельности. Если традиционно моря и океаны ранее были преимущественно районами рыболовства и мореплавания, то сейчас все больше внимания привлекают и шельфовые зоны, которые превращаются в районы освоения и добычи минеральных ресурсов, в первую очередь нефти и газа. Нефтегазодобывающие платформы устанавливаются на все больших глубинах. Планируется разработка месторождений полезных ископаемых с материкового склона и даже ложа морей и океанов. Изменения в структуре хозяйственного использования морей и океанов и введение новой технологии разведки и добычи полезных ископаемых повышают требования к объему и качеству гидрометеорологического обеспечения. При проектировании гидротехнических сооружений для открытых и прибрежных районов морей и океанов требуются сведения о «фоновых» и «экстремальных» волновых условиях. Как правило, эти сведения стремятся получить, используя наблюдения применительно к конкретному месту акватории. Однако только для редких точек Мирового океана существуют ряды инструментальных наблюдений, для большинства районов режимные характеристики волнения рассчитывают на основе численного моделирования или получают путем обобщения визуальных попутных судовых наблюдений. Несмотря на очевидные успехи в деле освещения волнового климата с использованием визуальных наблюдений (см., например, Gulev, Grigorieva et al., 200l), по точности определения «экстремальных» характеристик ветрового волнения этот подход уступает подходу, основанному на численном моделировании параметров ветровых волн. Можно привести несколько доводов в пользу этого утверждения. Как правило, капитаны стараются не попадать в штормовые зоны, в силу этого «экстремальное» волнение фиксируется реже, чем оно наблюдается в природе. Исследование волнового климата по данным визуальных наблюдений ведется не для конкретной точки, а обобщаются наблюдения, собранные в неком районе. В случае сильной пространственной изменчивости волнового климата в данном районе результат будет зависеть от его размеров и формы.

Последние десятилетия характеризуются прогрессом в области моделирования ветрового волнения. Он связан с разработкой моделей, которые позволяют рассчитывать направленный спектр ветрового волнения. Мировое признание получила модель WAM (см., например Komen et al., 1994; Polnikov et al., 2002), в нашей стране разработана «узконаправленная» модель ветрового волнения (Захаров, Смилга, 1981; Заславский, 1989; Кабатченко и др., 2001), которая по точности не уступает модели WAM, но качественным образом превосходит ее по быстродействию. В настоящее время разработано несколько методов вычисления режимных характеристик ветрового волнения, основанного на анализе результатов численных расчетов параметров волнения (см., например, Кабатченко, 1995; Рожков и др., 2000). Наибольшую известность получил метод POT (Petrauskas, Aagaard, 1971; Mathiesen et al., 1994; Матушевский, Кабатченко, 1999), надежность которого подтверждена множеством экспериментов, выполненных как в научных, так и в прикладных целях. Успехи в развитие численных моделей ветрового волнения и методов исследования волнового режима позволили автору на новой научной основе исследовать пространственную и временную изменчивость волнового климата на морях России. В том числе были оценены режимные параметры волн с малыми вероятностями превышения. В полной мере это относится и к высоте волны с периодом повторяемости 100 лет - основной режимной характеристике, необходимой для проектирования нефтегазодобывающих платформ. Была исследована важная особенность волнового климата - межгодовая изменчивость. Решение всех перечисленных вопросов необходимо для обоснования проектирования и строительства гидротехнических сооружений, для безаварийного ведения работ на шельфе и экономного расходования средств и материалов. Отсюда следует, что тема данной работы является актуальной и практически значимой.

Цель исследования

Цель исследования – выяснение пространственно-временной изменчивости волнового климата морей, омывающих Россию, выяснение «экстремальных» волновых условий для этих морей, создание компьютерной технологии диагноза и прогноза волновых полей для условий глубокого и мелкого моря.

Для развития данного направления:

Разработана новая численная гидродинамическая модель ветрового волнения, позволяющая по исходным полям ветра рассчитывать направленные спектры ветрового волнения в узлах регулярной сетки. Она базируется на «узконаправленной» спектральной теории ветрового волнения, разработанной акад. В.Е. Захаровым;

Внедрен в практику оперативных работ ГМЦ метод прогноза ветрового волнения, основанный на «узконаправленной» модели ветрового волнения. Метод верифицирован по данным нескольких сравнительных натурных экспериментов в соответствии с требованиями, предъявляемыми к оперативным методам, и лицензирован Центральной Методической Комиссией Росгидромета;

загрузка...