Технологические и методологические основы формирования функциональных покрытий

Автор: Мулин Юрий Иванович

В первой главе выполнен обзор и критический анализ литературных данных по современному уровню теоретических и практических разработок в области создания функциональных покрытий методом ЭИЛ и используемых электродных материалов.

Значительный вклад в развитие научного направления обработки металлов электрической искрой внесли российские и зарубежные ученые Б. Р. Лазаренко, Н. И. Лазаренко, Г. В. Самсонов, А. Г. Бойцов, Ф. Х. Бурумкулов, А. Д. Верхотуров, А. Е. Гитлевич, Б. Н. Золотых, Г. П. Иванов, И. А. Подчерняева, , В. А. Ким, Л. С. Палатник, Иноуэ Киеси и другие. Основой для развития нового направления – минералогического материаловедения являлись работы Н. П. Лякишева, В. А. Резниченко, В. А. Цветкова, Г. П .Швейкина, Э. Г. Бабенко и др.

В соответствии с вариантами применения порошковых и компактных электродных материалов приведены особенности конструкций установок и анализ процессов ЭИЛ, преимущественно по второму варианту, с рассмотрением основных моделей процессов и явлений, происходящих при формировании ИПС.

Установлено, что основные исследования массопереноса материалов при ЭИЛ выполнены в виде кинетических зависимостей, отражающих положение о трёхзвенной взаимосвязи (состав – структура – свойства) без учета многих технологических составляющих. При анализе исследований образуемых структур покрытий, в основном отмечаются однослойные варианты без оценки возможности совершенствования конструкций гетерогенных покрытий с изменением физико-механических свойств по толщине от поверхности к основе для обеспечения функционального назначения изделия. Ограничена информация о процессах формирования и свойствах многослойных, толстослойных (более 0,2 мм) и несплошных покрытий.

В качестве основного материала анода наиболее часто рекомендуется использование тугоплавких сплавов типа ВК и ТК. Использование минерального сырья в виде концентратов для извлечения из них ценных легирующих элементов, получения электродных материалов для ЭИЛ и покрытий ограничено. При использовании энергонасыщенных методов для вскрытия концентратов расширяются возможности восстановления из оксидов легирующих элементов и синтеза необходимых для ЭИЛ материалов. В настоящее время для Дальневосточного региона, имеющего значительные запасы руд вольфрама, хрома, циркония, бора, это положение является актуальным.

Анализ патентной информации по используемому оборудованию для ЭИЛ в России и за рубежом с целью увеличения производительности и повышения эксплуатационных характеристик позволяет выделить основные направления совершенствования электрододержателей, электронных схем генераторов импульсов с целью повышения их мощности, перехода от ручного легирования к механизированному и автоматизированному вариантам. На основании проведенного анализа сформулированы соответствующие задачи исследований.

Во второй главе определены следующие направления исследований в работе: 1 – создание технологических основ использования природно-легированных минеральных ассоциаций в качестве материалов для образования покрытий методом ЭИЛ; 2 – разработка научных основ получения электродных материалов из концентратов минерального сырья в процессе их начальной переработки на предприятиях-потребителях или приближенных к источникам сырья; 3 – использование новых электродных материалов для формирования структур покрытий – однослойных, многослойных, толстослойных, несплошных; 4 – разработка модели процесса формирования покрытия заданной толщины с учетом энергетических (технологических) параметров, исследование закономерности и причин разрушения ИПС после достижения им определенной толщины; 5 – создание новых высокопроизводительных установок (в том числе механизированных) для образования вышеуказанных структур покрытий с заданными свойствами.

Приведены особенности нового пятизвенного материаловедческого положения об изучении взаимосвязи “условия эксплуатации – состав – структура – технология – свойства”. В соответствии с положением, об особой роли "технологии" для исследуемых вариантов обработки ЭИЛ был предложен управляющий технологический параметр, в который входят приведенная величина энергии, затрачиваемая на образование покрытия площадью в 1 см2 Wп, частота следования fи и длительность следования (и искровых разрядов.

При решении задач комплексной безотходной переработки концентратов минерального сырья и исследованиях процессов формирования покрытий на подложках с обеспечением требуемых эксплуатационных характеристик использована систематизированная информация в виде банков данных Института материаловедения ХНЦ ДВО РАН: "Минеральное сырье Дальнего Востока" и по искровому легированию материалов "New spark".

Сложность одновременно происходящих при ЭИЛ электрофизических, химических и других явлений не позволяет построить адекватную математическую модель, описывающую все наблюдаемые особенности процесса, в том числе изменения структуры и свойств формируемых покрытий.

Обязательным условием формирования ИПС при ЭИЛ на локальных участках катода является наличие эрозии материалов электродов и микрованны с расплавленным микрообъемом материалов. При неполном знании механизмов явлений, происходящих в микрованне расплавленного металла, создание, анализ и оптимизация математических моделей формирования ИПС, связывающих свойства со всеми теми переменными, от которых они зависят, обеспечиваются экспериментально-статистическими методами. Реализация выбранных методов исследований осуществлена в логической последовательности с использованием математических методов:

множественного корреляционно-регрессионного анализа и статистического планирования экспериментов. Для проведения исследований использовалось как стандартные, так и оригинальные методики и оборудование.

Образование покрытий на подложках из сталей и титановых сплавов выполнено при использовании установок ЭИЛ моделей: Разряд–3М (для порошковых материалов, усовершенствована по а.с. № 1815043, 1823308), Элитрон-22А, Элитрон-16, ИМ-01, ИМ-03, ИМ-05, ИМ-101. Для установок мод. ИМ спроектированы принципиальные схемы генераторов импульсов, изготовлены, испытаны в лабораторных и производственных условиях под руководством соискателя. Последняя модель установки использовалась при механизированном легировании в комплекте с токарно-винторезным станком мод. 1К62 и одноэлектродной головкой.

Микротвердость поверхности определялась с помощью микротвердомера ПМТ-3, для оценки микротвердости крупногабаритных изделий использован специальный прибор (по а.с. № 1658058). Металлографические исследования поверхностных слоев выполнялись на микроскопе МИМ-10. Сравнительные испытания на износостойкость проведены на машине трения МТ-22П по схеме “вал(колодка” и с помощью центробежного ускорителя ЦУК-3М. Толщина наносимых покрытий измерялась микрометром Mitutoyo, шероховатость поверхности определялась профилографом модели 296, Калибр 201.

Исследования на жаростойкость покрытий выполнялись на дериватографе Q=1000. Для рентгенофазового анализа покрытий, а также для исследования параметров тонкой кристаллической структуры – размеров блоков и величины микронапряжений(применялся дифрактометр ДРОН-3М. Исследование распределения элементов по толщине образуемых покрытий в поперечном сечении проводилось с помощью микроанализатора МАР-3. Средние значения содержания элементов определялись атомно-абсорбционным и химическим анализами в Институте химии ДВО РАН.

Определение энергетических параметров процесса электроискрового легирования для установок выполняли на специальном стенде, включающем осциллограф мод. С8-17, прибор для определения среднего количества состоявшихся искровых разрядов, цифровой мультиметр M890G для измерения частоты следования искровых разрядов. Значения энергии искрового разряда рассчитывали по вольтамперным осциллограммам.

При исследовании массопереноса изменяемым параметром являлась приведенная величина энергии искровых разрядов Wп при легировании подложки площадью 1 см2, значение которой определено по средней величине энергии одного искрового разряда Wu. Численно приведенная величина энергии рассчитывалась

Wп = Wu ( Nu ( t= Wu(60fu ( Ku)t , (1)

где Wu – среднее значение энергии одного искрового разряда при исследовании каждого из указанных материалов; Nu – среднее количество искровых разрядов, состоявшихся в течение 1 мин; t – время легирования 1 см2 поверхности, мин; fu – частота следования искровых разрядов, Гц;

Ku = Nu/fu – коэффициент, определяющий прохождение искрового разряда.

Гравиметрическим методом определяли величины удельной эрозии анода (а и удельного привеса катода (к через каждую 1 мин процесса ЭИЛ. По их значениям рассчитывали суммарную эрозию анода ((а и суммарный привес катода ((к; коэффициент переноса материала по формуле K=(к/(а при t = const для каждого электродного материала; графически определяли tх и Wпх – соответственно время порога хрупкого разрушения ИПС и приведенную энергию искровых разрядов, которым соответствует первое отрицательное значение (к или максимальное значение ((к.

В третьей главе проводятся исследования по образованию покрытий из многокомпонентных минеральных соединений, которыми являются природно-легированные порошковые материалы концентратов (шеелитового, датолитового, бадделеитового) и материалы, полученные при первичной переработке шеелитового концентрата и ильменита методом алюминотермии. Результатом использования таких технологий является значительное снижение стоимости производства материалов для образования покрытий за счет исключения гидрометаллургических процессов, большого количества этапов обработки при обогащении руды и получение гетерогенной композиции материала покрытия.

Использование порошков указанных концентратов в качестве электродных материалов и концентрированных потоков энергии в межэлектродном промежутке для воздействия на них позволяет образовывать покрытия на металлических поверхностях. Характеристики образованных покрытий приведены в табл. 1.

Таблица 1

Характеристики покрытий, образуемых из порошков концентратов

Концентрат Толщина покрытия

Тп,, мкм Микро-твердость покрытия

Н(, ГПа Толщина переход-ной зоны, мкм Шерохова-тость поверхности

Rа, мкм Фазовый состав

покрытий

Шеелитовый 15–38 9,7–10,1 18–30 6,0–10,0 Fe;WO3;FeW;

WFe2; W; WC

Датолитовый 10–20 9,1-9,5 16–30 5,0–9,5 Fe; FeB; B4 С

Бадделеитовый 12–26 9,2–9,5 14–28 5,0–9,5 Fe; ZrO2; ZrFe2; Zr

(nз для нахождения технологических режимов процесса ЭИЛ, которые позволяют определять ресурс работы покрытий из исследованных порошковых материалов c учетом влияния эксплуатационных воздействий. Определены ограничения по толщине образуемого слоя и возможности использования порошковых материалов из минерального сырья для образования функциональных покрытий на металлической подложке.

- n3 при фиксированных значениях расхода массы порошка q = 0,31 г/мин, давлении P = 1 МПа, скорости скольжения V = 0,25 м/с для образцов из стали ВСт.3 пс диаметром 50 мм, покрытиями из шеелитового (а), бадделеитового и датолитового (б) концентратов

Для синтеза нового класса электродных материалов из шеелитового концентрата и ильменита использован метод алюминотермии. При создании новых композиционных электродных материалов, состоящих из тугоплавких соединений вольфрама и пластичных связок, использовано положение, в соответствии с которым при выполнении процесса ЭИЛ уменьшается межзеренная прочность материала анода, повышается его эрозия в жидкой фазе. При формировании покрытий материал связки обеспечивает образование неограниченных твердых растворов или интерметаллидов с материалом подложки. В качестве легирующих добавок, определяющих элементный, фазовый состав электродных материалов, в шихту вводились оксиды хрома, молибдена, кобальта, никеля, циркония, титана.

Разработан эффективный состав реакционной шихты для алюминотермии, процесса получения многокомпонентных электродных материалов для ЭИЛ и образования покрытий с высокими физико-механическими параметрами. Оптимальный подбор состава реакционной шихты обеспечивает температурный режим, необходимый для полного восстановления присутствующих в смеси оксидов, в том числе легирующих, и надежное разделение продуктов реакции на две фазы: металлическую и шлаковую (патенты № 2043862, 2098232). Элементный состав новых материалов и характеристики образуемых покрытий приведены в табл. 2, 3.

Таблица 2

Элементный состав электродных материалов из шеелитового концентрата

загрузка...