Delist.ru

Комплексные методы и средства контроля и диагностики металлических конструкций (25.08.2007)

Автор: Гордиенко Валерий Евгеньевич

Научная новизна диссертационной работы состоит в том, что:

Разработаны теоретические и практические положения по оценке действительного напряженно-деформированного состояния металлических конструкций, включающие предварительное выявление зон концентрации напряжений, оценку степени их опасности и определение в наиболее опасных из них действующих внутренних напряжений.

Разработаны способы обработки малоуглеродистых и низколегированных сталей, включающие в себя проведение деформационного, деформационно-термического и термического воздействий и позволяющие получить микроструктуру с требуемой степенью дисперсности, соответствующую различным состояниям поставляемого заводского проката, и способы ее магнитного контроля.

и действующими внутренними напряжениями при малоцикловом упруго-пластическом деформировании сталей с учетом их химического состава и исходной микроструктуры.

от уровня внутренних напряжений, химического состава и исходной микроструктуры сталей при циклическом упруго-пластическом деформировании.

, позволяющие оценить уровень действующих внутренних напряжений в зонах концентрации напряжений при нагружении и разгружении элементов конструкций и сварных соединений.

Разработаны и запатентованы способы определения действующих внутренних напряжений в изделиях из ферромагнитных материалов.

Разработана экспериментально-расчетная методика выявления действительного напряженно-деформированного состояния металлических конструкций с учетом структуры и химсостава металла, структурной неоднородности зон сварных соединений и кинетики развития коррозионных повреждений на основе комплексного применения методов и средств контроля и диагностики.

Разработаны способы усиления сварных соединений и элементов металлических конструкций путем проведения восстановительной термической обработки за счет направленного изменения микроструктуры металла в локальных зонах концентрации напряжений с последующим магнитным контролем.

Разработана методика контроля напряженно-деформированного состояния элементов металлических конструкций в выявленных зонах концентрации напряжений за счет проведения магнитного мониторинга.

Степень обоснованности научных положений, рекомендаций и выводов обеспечиваются: корректностью поставленных задач, представительностью и достоверностью исходных и экспериментальных данных, использованием общепринятых в механике материалов теорий, гипотез и допущений, применении апробированных и корректных методик разрушающего и неразрушающего контроля, методов математического моделирования и прочностного расчета, а также методов прикладной статистики и интерпретации статистических данных.

Положения, выносимые на защиту:

Теоретические и практические положения по оценке действительного напряженно-деформированного состояния металлических конструкций, включающие предварительное выявление зон концентрации напряжений, оценку степени их опасности и определение в наиболее опасных из них действующих внутренних напряжений.

Результаты разработки способов получения микроструктур с заданной степенью дисперсности в малоуглеродистых и низколегированных сталях и рекомендации по усилению сварных соединений и элементов металлических конструкций по разработанным режимам термической обработки с применением магнитного контроля.

Результаты широкомасштабных экспериментальных исследований по изучению взаимосвязи действующих внутренних напряжений и напряженности магнитного поля рассеяния в сталях с различным химическим составом и структурным состоянием в условиях малоциклового упруго-пластического деформирования.

Описание механизма, объясняющего связь магнитных, структурных и механических параметров малоуглеродистых и низколегированных сталей при малоцикловом упруго-пластическом деформировании в слабом магнитном поле Земли.

Результаты разработки частных и обобщенных графических и аналитических регрессионных зависимостей, описывающих взаимосвязь магнитных, структурных и механических параметров малоуглеродистых и низколегированных сталей и позволяющих оценить уровень действующих внутренних напряжений при нагружении и разгружении элементов металлических конструкций.

Результаты разработки экспериментально-расчетной методики выявления действительного напряженно-деформированного состояния металлических конструкций на основе комплексного применения методов и средств контроля и диагностики и методики магнитного мониторинга.

Практическая значимость диссертационной работы состоит:

В разработке способов получения микроструктур в малоуглеродистых и низколегированных сталях с заданной степенью дисперсности за счет проведения деформационной, деформационно-термической и термической обработок и способов ее поэтапного магнитного контроля.

(1 патент РФ и 2 решения о выдаче патентов РФ на изобретения). Способы могут быть использованы при диагностировании технического состояния металлических конструкций и оборудования в процессе изготовления, монтажа, эксплуатации, реконструкции и реновации в различных отраслях промышленности, что позволит повысить степень достоверности результатов измерений и выявить резервы несущей способности.

В апробации частных и обобщенных графических и аналитических зависимостей структурных, магнитных и механических параметров малоуглеродистых и низколегированных сталей при определении в контролируемых зонах действующих внутренних напряжений, и использовании их в прочностных расчетах при оценке напряженно-деформированного состояния эксплуатируемых металлических конструкций.

В разработке и апробировании в промышленных условиях (локомотивное депо ЗАО "Локомотив" ДО ОАО "Кировский завод", Санкт-Петербург) экспериментально-расчетной методики оценки напряженно-деформированного состояния металлических конструкций, учитывающей выявление зон локальных и общих коррозионных повреждений и структурной неоднородности сварных соединений, и последующего магнитного мониторинга внутренних напряжений в зонах концентрации напряжений.

В разработке способов усиления сварных соединений и элементов металлических конструкций за счет проведения контролируемой термической обработки локальных зон концентрации напряжений по разработанным режимам рекристаллизационного отжига и термоциклической обработки малоуглеродистых и низколегированных сталей.

В использовании результатов исследований, изложенных в диссертации, в учебных курсах "Технология конструкционных материалов", "Материаловедение" и "Технология сварки мостовых конструкций", читаемых в Санкт-Петербургском государственном архитектурно-строительном университете для студентов строительных специальностей и студентов специальности "Мосты и тоннели".

Апробация работы. Основные положения диссертационной работы доложены на научно-технических конференциях и семинарах: на IV Всероссийском с международным участием научно-практическом семинаре "В мире неразрушающего контроля и диагностики материалов, промышленных изделий и окружающей среды" (С.-Пб., 2003); на семинаре "Сварочные технологии", посвященному 160-летию Котлонадзора России (С.-Пб., 2003); на научном семинаре в СПбГТУ (2007), на 56–59-ой международных научно-технических конференциях молодых ученых (аспирантов, докторантов) и студентов "Актуальные проблемы современного строительства" (С.-Пб., 2003–2006); на 60–64-ой научных конференциях профессоров, преподавателей, научных работников, инженеров и аспирантов СПбГАСУ (С.-Пб, 2003–2007).

Публикации. Основные положения диссертационного исследования достаточно полно отражены в 47 публикациях, в состав которых входят 4 монографии, 1 патент РФ и 2 решения о выдаче патента РФ на изобретения; в изданиях, рекомендованных Перечнем ВАК, опубликовано 6 научных работ.

Структура и объем работы. Диссертационная работа состоит из введения, 8 глав, общих выводов, заключения и списка литературы. Диссертация изложена на 348 страницах основного текста, содержит 107 рисунков, 16 таблиц и 1 приложение.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении дан краткий обзор состояния вопроса и обоснована актуальность темы диссертации, сформулированы задачи исследований и основные результаты, выносимые на защиту.

Первая глава посвящена анализу современного состояния методов и средств контроля, диагностики и оценки напряженно-деформированного состояния металлических конструкций.

Целесообразность использования неразрушающих методов контроля, основанных на различных физических эффектах, в том числе эффекте магнитоупругости, доказана в результате многочисленных исследований Акулова Н.С., Бахарева М.С., Векслера Н.А., Вицены Ф., Вонсовского С.В., Власова В.Т., Горбаша В.Г., Горицкого В.М., Горкунова Э.С., Дубова А.А., Дубова Ал. А., Киренского Л.В., Колокольникова С.М., Клюева В.В., Кулеева В.Г., Макарова В.Н., Михеева М.Н., Мужицкого В.Ф., Ничипурука А.П., Смирнова А.С., Фадеева А.Ю., Щербинина М.Н., Шель М.М., Шура Я.С., Яценко Т.А. и многих других. Однако до сих пор, несмотря на острую необходимость в информации о действительной работе элементов и узлов конструкций, получить ее в достаточном объеме часто не удается ввиду отсутствия эффективных методов выявления зон концентрации напряжений и измерения в наиболее опасных зонах действующих в металле внутренних напряжений.

Проведенный анализ различных методов оценки НДС металла выявил значительные трудности в решении этой проблемы. Так, например, разрушающие методы контроля для этих целей практически не пригодны. В то же время, и традиционные методы НК практически не позволяют выявлять внутренние напряжения и дефекты на ранней стадии их развития, в том числе в опасных зонах концентрации напряжений. Однако если такие опасные зоны не выявлены, то в этом случае снижается ценность выполнения поверочных прочностных расчетов с целью прогнозирования дальнейшей работоспособности металлических конструкций.

Наиболее приемлемыми являются косвенные методы определения действующих внутренних напряжений, к которым можно отнести магнитные методы, использующие эффект магнитоупругости. Однако значительная часть этих методов требует проведения предварительного намагничивания или подмагничивания зоны контроля металла с использованием намагничивающих систем. Трудность намагничивания повышается с увеличением габаритов конструкции, а также с увеличением количества труднодоступных и трудноконтролируемых узлов и элементов конструкции. Во многих случаях для повышения надежности и достоверности контроля требуется зачистка поверхности сварного соединения или даже снятие усиления сварного шва, что не всегда представляется возможным и целесообразным. Если учесть, что около 80 % разрушений конструкций происходит в сварных соединениях, то проблема такого контроля усугубляется.

В ряде работ показано, что весьма перспективными являются методы магнитного контроля, использующие остаточную намагниченность, в частности, используемый в данной работе метод магнитной памяти металла, измеряющий напряженность магнитных полей рассеяния, возникающих на поверхности конструкций в слабом магнитном поле Земли в процессе изготовления и эксплуатации. Метод позволяет осуществлять контроль при точечном контакте феррозондового преобразователя с поверхностью контроля, не требует предварительной подготовки поверхности и дополнительного намагничивания и является наиболее привлекательным.

Проведенный анализ показал, что систематические исследования по совершенствованию методов и средств контроля диагностики технического состояния, определению действующих внутренних напряжений и оценке НДС металлоконструкций при упруго-пластическом деформировании, с учетом химического состава и исходной микроструктуры сталей, вида и режима действующих нагрузок, отсутствуют. Практически отсутствуют работы по оценке НДС сварных соединений с учетом их структурной неоднородности при малоцикловом нагружении сталей, по выявлению зон локальных коррозионных повреждений с моделированием кинетики их развития и влияния на НДС конструкций. Не исследованы возможности проведения магнитного мониторинга при диагностировании технического состояния металлических конструкций в опасных зонах концентрации напряжений.

Использование эффекта магнитоупругости открывает широкие перспективы для совершенствования методов и средств контроля и диагностики технического состояния с целью повышения надежности и долговечности МК. Однако они в достаточной степени не реализованы, как для выявления зон КН в элементах сварных МК, оценки степени их опасности с учетом химического состава и исходной микроструктуры стали, так и для определения действующих внутренних напряжений, повышения достоверности прочностного расчета, учитывающего кинетику развития коррозионных повреждений, и последующего магнитного мониторинга выявленных опасных зон КН.

Вторая глава посвящена обоснованию и выбору материала исследования, методов исследования, выбору крупномасштабных моделей МК и разработке базовых положений диагностики технического состояния с использованием эффекта магнитоупругости метода МПМ.

Разработана методика диагностики технического состояния конструкций из ферромагнитных материалов методом магнитной памяти металла, реализующим эффект магнитоупругости. Напряженность магнитного поля рассеяния контролировали с помощью прибора ИКНМ-2 ФП (измеритель концентрации напряжений магнитометрический с двухканальным феррозондовым преобразователем). В процессе измерений значений магнитного параметра во время остановок при циклическом нагружении сохранялся постоянный контакт преобразователя с поверхностью контролируемой зоны КН.

. Показано, что после первого цикла нагружение–разгружение магнитомеханическая предыстория образцов для всех исследованных сталей практически полностью стирается (рис. 1). Толщина немагнитного защитного покрытия до 3 мм не оказывает существенного влияния на результаты испытаний.

загрузка...