Delist.ru

Разработка состава и технологии спекания дисперсно-упрочненных композиционных материалов TiC-TiNi с повышенными вязкоупругими свойствами (25.08.2007)

Автор: Акимов Валерий Викторович

В первой главе «Состояние вопроса. Проблемы создания композиционных материалов с заданными физико-механическими свойствами» приведен анализ состояния проблемы получения новых композиционных материалов с дисперсными тугоплавкими частицами. Спеченные твердые сплавы обычно обладают рядом ценных свойств: высокой твердостью и прочностью в сочетании с вязкостью, пластичностью и высокой износостойкостью, благодаря которым их эффективно используют во многих отраслях промышленности. Широкое применение получили твердые сплавы на основе монокарбида вольфрама, однако в ряде случаев эти сплавы не обеспечивают достаточной работоспособности изделий в жестких условиях эксплуатации. Кроме того, дефицит вольфрама и кобальта, их дороговизна привели к попыткам частично или полностью заменить в твердых сплавах карбид вольфрама. Поэтому становится актуальной задача создания новой группы композиционных материалов на основе тугоплавких соединений титана, которые получили название «безвольфрамовые твердые сплавы».

Разработка безвольфрамовых твердых сплавов многими исследователями изначально основывалась на замене дефицитного карбида вольфрама карбидами тугоплавких металлов. Лучшие результаты были получены при использовании карбидов и карбонитридов титана. Благодаря достаточно высокому комплексу свойств и хорошей смачиваемости жидкими металлами (Ni, Co, Ni–Mo), карбид титана является наиболее удачным заменителем карбида вольфрама в качестве наполнителя в безвольфрамовых твердых сплавах.

Разработке сплавов на основе карбида титана с никелевой и никель-молибденовой связкой посвящен ряд работ под руководством Г. В. Самсонова и М. С. Ковальченко и сотрудников Института проблем материаловедения АН УССР. Сплавы на основе карбонитрида титана с Ni и Ni–Mo связками были получены и подробно изучены группой Г. П. Швейкина в УНЦ АН СССР.

Ранее выполненные исследования показывают, что улучшение свойств твёрдых сплавов достигается за счёт изменения карбидного компонента, улучшения прочностных свойств и пластичности связующей матрицы, обеспечивающей хорошее смачивание карбидов. Размер зерна карбидной фазы после спекания существенно зависит от размеров частиц компонентов сплава, температуры спекания и времени выдержки, что было доказано Г.В. Самсоновым, М.С. Ковальченко, Г.П. Швейкиным, Н.Н. Середой, С.Н. Кульковым, Т.М. Полетикой, А.П. Савицким, автором данной работы и другими учёными.

Решающим фактором при создании высокопрочных твёрдых сплавов является выбор связующего материала. Анализ работ по спеканию КМ Я.Е. Гегузина, П.С. Кислого, М.С. Ковальченко, Р. Киффера, Б.Я. Пинеса, Г.В. Самсонова, Г.П. Швейкина, П.В. Гельда, Г.С. Креймера, В.А. Ивенсена, М.А. Кузенковой и других ученых показал, что связующая фаза должна быть достаточно пластичной и твёрдой при нормальных условиях, кроме того, она должна хорошо смачивать и частично растворять карбидную фазу при жидкофазном спекании.

В то же время данные литературных источников указывают на то, что применяемые в твердых сплавах связующие фазы в большинстве случаев обладают ограниченной релаксационной способностью, необходимой для эффективного уменьшения внутренних напряжений, возникающих при нагружении твёрдых сплавов с гетерогенной структурой. Наиболее перспективным в этом плане согласно литературным данным является интерметаллид NiTi.

Общий анализ результатов экспериментальных исследований в области разработки безвольфрамовых твердых сплавов (БВТС) позволяет сделать вывод о том, что в настоящее время пока не существует общего подхода к объяснению физико-химических процессов формирования структуры твердых сплавов, обоснованных рекомендацией по выбору типа и химического состава связующей фазы, а также их связи с физико-механическими свойствами БВТС.

По моему мнению, теоретической основой для решения рассматриваемой задачи может быть структурно-энергетический подход к описанию механизма межфазного взаимодействия компонентов и формирования структуры и свойств композита. Данный подход с позиций термодинамики неравновесных процессов был развит профессором Ю. К. Машковым при анализе процессов трения и изнашивания в металлополимерных трибосистемах.

Такой подход позволяет обосновать правила выбора компонентов системы и требования к их физическим свойствам, описать термодинамические процессы структурно-фазовых превращений в процессе жидкофазного синтеза твердого сплава и оценить их на термодинамическую устойчивость и свойства формирующейся структуры. На основании выполненного анализа структурно-энергетического подхода были сформулированы цель и задачи исследований и разработок.

Во второй главе «Постановка задачи. Используемые материалы и методика исследований для создания новых материалов» анализируются свойства тугоплавкой твердой фазы карбида титана TiC и связующей фазы TiNi с позиции структурно-энергетического подхода, используемого для получения нового ТСКМ. Обосновываются выбор и разработка методов и средств экспериментального исследования, а также влияние малых добавок легирующих элементов на структуру, физико-механические и эксплуатационные свойства композитов.

Рассматриваются также способы получения твердых сплавов, изготовление образцов для испытаний, экспериментальные методики и методы расчета вязкоупругих, прочностных, теплофизических свойств.

Новые твердые сплавы готовили из смеси спрессованных порошков карбида титана производства НПО «Тулачермет» (ТУ-48-19-73) и никелида титана (NiTi), полученного там же (ТУ-14-127-104-48). Размер исходных частиц карбида титана составляет 1…5 мкм, никелида титана – от 10 до 50 мкм. Аморфный бор марки ОЧ, титан, карбонитрид титана, нитрид титана, никель, вводимые в твердый сплав в качестве легирующих элементов, имели размер частиц 0,05…1,00 мкм.

При изучении процессов спекания каркасов смеси карбида и карбонитрида титана с различными добавками наряду с исходными порошками обычного гранулометрического состава брали также ультрадисперсные порошки TiC, TiCN, Ni с размером частиц от 20 до 100 нм. Все компоненты композиционных материалов перед прессованием и спеканием подвергали очистке раствором ацетона или спирта с целью удаления с поверхности частиц окислов или других химических соединений и повышения их адгезии. Образцы готовили холодным односторонним прессованием при давлении 100…200МПа с последующим вакуумным спеканием в высокотемпературной печи при давлении не выше 0,1 МПа.

Микроструктуру материала, распределение фаз и величину карбидных зерен изучали на оптических микроскопах «МИМ-8», «Неофот-21» и растровым электронным миктоскопом «РЭМ-200». Рентгеноструктурный и фазовый анализы порошков, прессовок и спеченных образцов осуществляли на рентгеновском дифрактометре «ДРОН-3,0» при медном (Cu) и кобальтовом (Co) фильтрованном излучении. Относительное количество, состав, дефектность фаз, присутствующих в изучаемых образцах, оценивали интенсивностью и уширением рентгеновских рефлексов. Прочностные характеристики композиционного материала определяли в соответствии с ГОСТ 7668–82, ГОСТ 20019–74, ГОСТ 25602–80 на машине «Инстрон-1185». Термический анализ спекаемых материалов в инертной среде и на воздухе проводили с помощью прибора «Дериватограф Q-1500 Д» с платино-платинородиевыми термопарами. Структурные характеристики (плотность, пористость, химический анализ на содержание кислорода, твердость по Роквеллу и Виккерсу) определяли согласно ГОСТ 20018–74, ГОСТ 8505–84, ГОСТ 20017–74. Упругие и неупругие свойства спеченных сплавов определяли ультразвуковыми резонансным и импульсным методами.

Мартенситные превращения, происходящие в связующей фазе TiNi твёрдых сплавов при определенных температурах, изучали измерением теплоемкости на промышленной установке ИТ-С-400. Результаты измерений подвергались статистической обработке.

Износостойкость композиционных материалов определяли при испытании образцов на трение о мерзлый грунт. Разработанная для этой цели установка изготовлена на базе продольно-строгального станка. Образцы имели цилиндрическую форму, в качестве абразивной среды использовали замороженные блоки глинопесчаной смеси. Кроме того, исследовали износостойкость твердого сплава на установке, созданной на базе токарного станка при трении о закрепленный абразив согласно ГОСТ 17367-71.

Деформационное упрочнение композитов проводили методом термомеханической обработки (ТМО) с использованием накатного ролика при температуре нагрева 900…1000(С, и постоянной скорости вращения 6,6 об/с и усилии прижима 50…250 Н.

В третьей главе «Физические основы методов получения композиционных материалов на основе TiCN, WC, TiC» с целью изучения роли малых добавок (0,1…0,5 вес. %) Ni, Co, Cr, TiNi в механизме структурообразования представлены результаты изменения пористости спеченных порошковых материалов карбонитрида титана TiC0,045N0,796. На основании проведенных исследований объяснен механизм уплотнения данных материалов при свободном вакуумном спекании. Установлено, что введенные добавки металлов при высоких температурах расплавляются и располагаются по границам матричной фазы, образуя расплав, вызывая ускорение процессов объемной диффузии, и ускоряя усадку при увеличении температуры спекания.

По результатам химического и рентгеноструктурного анализов установлено, что кислород, адсорбированный поверхностью сырого порошка, при спекании полностью не удаляется. Вакуум при относительно невысоких температурах способствует испарению окислов. Тем не менее небольшие добавки активаторов, например Со до 0,1 вес. %, снижают пористость до 4…5%, средний размер зерен до 1,33мкм, уменьшают содержание кислорода в результате жидкофазного активированного спекания (до 0,5%). Однако, при этом такие прочностные характеристики спеченного композиционного материала, как пределы прочности на изгиб и на сжатие, оказались невысокими: 500…700 МПа, твердость 65…72 HRA.

С целью определения наиболее эффективного тугоплавкого компонента исследованы процессы жидкофазного спекания композита на основе ультрадисперсного порошка карбонитрида титана со связующей интерметаллидной фазой TiNi. Спеканием в вакууме композиции (50 об. % TiC0,045N0,796 – 50 об. % TiNi) при температуре 1280 ?С в течение одного часа не удалось получить ТСКМ с высокими прочностными характеристиками. Проведенные исследования по пропитке спеченных каркасов из ультрадисперсных порошков карбонитридов титана с пористостью 10…26 % расплавом интерметаллида при температуре 1300 ?С в вакууме также не дали ожидаемых результатов. Низкие прочностные характеристики данных спеченных композиционных материалов обусловлены слабостью связи ультрадисперсных частиц карбонитрида титана никелидом титана на границах фаз, а также недостаточной смачиваемостью частиц TiCN расплавом TiNi. Поэтому с учетом проведенных исследований при получении твердых сплавов был сделан выбор в пользу тугоплавкой составляющей TiC.

Кроме того, проведенные исследования по активированному спеканию ультрадисперсных порошков карбонитридов титана с малыми добавками элементов Ni, Co, Cr, а также пропитке спеченных каркасов TiCN расплавом TiNi оказались полезными в плане отработки технологии получения ТСКМ жидкофазным спеканием и позволили правильно выбрать тугоплавкую и связующую фазы.

В четвертой главе «Разработка технологических основ получения твёрдых сплавов на основе TiC со связующей фазой из интерметаллида TiNi» особое внимание уделено исследованию процессов жидкофазного спекания с целью определения оптимальной температуры получения сплавов на основе карбидов титана в зависимости от содержания компонентов.

Предварительно был выполнен теоретический анализ моделей эволюционных процессов при спекании на уровне микроструктуры поликристаллического материала. Исходная порошковая смесь TiC со связующей фазой TiNi рассматривалась как модель случайной плотной упаковки ансамбля SS сфер с установленным законом распределения диаметров (y:

где ri – радиус-вектор центра сферы; dj – ее диаметр, определяемый в соответствии со знаком распределения диаметров; j – номер сферы.

Геометрические модели микроструктуры разрабатываемого материала на основе карбида титана со связующей интерметаллидной фазой TiNi основываются на обобщении известных моделей А. Е. Гегузина, П. С. Кислого, Е. Арцта, Н. Аткинсона, Д. Г. Уэдлера, Дж. Росса, Р. М. Кадушникова, М. С. Ковальченко, Г. В. Самсонова.

Модель микроструктуры была представлена в виде дискретных частиц, преобразующихся при спекании в материал с мозаичной структурой. Для описания формы частиц использовали комплекс геометрических моделей «сфера–полиэдр» (рис.1, б). При моделировании ансамбля сфер SS (рис. 1, а) к структуре полиэдров P? необходимо добавить структуры пор Sp, которые располагаются на ребрах, гранях и вершинах полиэдров (рис. 1, б).

В процессе рекристаллизации и эволюции микроструктуры на заключительной стадии спекания в качестве основной геометрической модели зерен структуры ТСКМ TiC–TiNi использовались полиэдры Вороного (рис. 1, в).

а б в

Рис. 1. Геометрические модели микроструктуры поликристаллического материала: плотноупакованная структура сфер (а); комбинация «сфера–полиэдр» (б); структура полиэдров Вороного (в)

В процессе спекания происходят также исчезновение и коагуляция пор, что неизбежно ведет к отклонению полиэдрической структуры от идеальной и стремлению спекаемой системы достигнуть равновесного состояния за счет измененной формы полиэдров. Такое представление модели возникает из геометрических свойств полиэдров Вороного, построенных на структуре пересекающихся сфер. Зерна карбидных частиц очень часто принимают округлую призматическую форму с минимальной свободной поверхностью.

Для исследования процессов спекания в вакууме композиции «TiC–TiNi» изучались достаточно широкий интервал температур спекания, от 1100 до 1350 0С, и состав композиции, от 30 до 70 об. % TiNi.

Рассмотренные модели процессов эволюции поликристаллических материалов не позволяют раскрыть механизм формирования структуры ТСКМ в условиях жидкофазного спекания. В то же время на основе анализа результатов экспериментальных исследований структуры и свойств ТСКМ системы «TiC–TiNi», полученных методом прессования и жидкофазного спекания при различных технологических режимах, можно описать механизм формирования структуры твердого сплава с применением структурно-энергетического подхода. При данном подходе используются термодинамические критерии, определяющие характер и направление термодинамических процессов при формировании структуры и разрушении твердых сплавов системы «TiC–TiNi».

В соответствии с кинетической теорией прочности долговечность нагруженного тела как фундаментальная характеристика механической прочности отражает усредненную скорость протекания разрушения, связанного с накоплением повреждений в твердом теле. Основная закономерность, связывающая напряжение, абсолютную температуру и долговечность (, описывается известным уравнением Журкова:

где A – постоянная, зависящая от свойств материала; u0 – энергия активации процесса разрушения при отсутствии напряжения; ( – напряжение; ( – структурно-чувствительный параметр; k – постоянная Больцмана.

Энергия активации разрушения u0 не чувствительна к изменениям структуры и может характеризовать свойства материала в качестве одной из констант, а параметр ( является структурно-чувствительным.

Уравнение долговечности Журкова также характеризует структурно-энергетическое состояние твердого тела, которое оно приобретает под влиянием внешних энергетических факторов при его синтезе и эксплуатации.

Уравнение Журкова отражает температурно-временную зависимость прочности твердых тел при простом одноосном растяжении. В то же время в процессе нагружения трением, изгибом, сжатием поверхностные слои трущихся тел испытывают напряжения различного вида и значительные деформации, приводящие к накоплению микродефектов и структурно-фазовым превращениям, которые сопровождаются изменением свободной поверхностной энергии, внутренней энергии, энтропии и других термодинамических параметров. Показано, что изменение названных термодинамических характеристик и структур сталей и композиционных материалов наблюдается также при сжатии и трении.

Результаты приведенных работ и исследований других авторов, выполненных на различных материалах, указывают на то, что в поверхностном слое и в объеме образцов твердых тел при одноосном нагружении (уравнение Журкова) и других видах нагружения, включая фрикционное, происходят однотипные структурно-энергетические изменения, приводящие к постепенному накоплению микродефектов и разрушению структуры. Они имеют общую природу и зависимость от энергетического воздействия внешней среды.

Исходя из рассмотренных положений, эволюцию структурно-энергетического состояния композиционного материала можно представить в виде структурно-энергетической модели с двумя уровнями энергии (рис. 2).

В процессе прессования композиционной смеси происходят деформация, трение частиц друг о друга и стенки пресс-формы, частичное разрушение исходных равновесных структур и система переходит в состояние с уровнем энергии E1. При этом возникают новые напряженно-деформированные структуры с более высокими механическими свойствами, но неустойчивые. Это состояние с уровнем энергии E1 в процессе спекания сменяется более устойчивым состоянием с уровнем энергии E2 за счет образования энергетически выигрышных эвтектических структур связующей фазы и мелкозернистой плотной структуры карбидов, представляющих собой устойчивую метастабильную структуру композита.

загрузка...