Delist.ru

Автоматизация процесса формирования индивидуальных учебных плано в систем е переподготовки персонала промышленных предприятий (25.05.2009)

Автор: Ягудаев Геннадий Григорьевич

Методы исследования

При разработке формальных моделей компонентов системы переподготовки и аттестации персонала в диссертации использовались методы общей теории систем, случайных процессов, экспертного оценивания и др.

Научная новизна

Научную новизну работы составляют методы и модели, обеспечивающие автоматизированное формирование индивидуальной образовательной траектории. На защиту выносятся:

интеграция методов и моделей структуризации учебного материала и процедур тестового контроля;

компетентностная модель обучаемого в системе переподготовки персонала;

методика корректировки учебного плана переподготовки с учетом согласования нагрузки по сложности учебного материала;

программно-моделирующий комплекс формирования индивидуальных учебных планов.

Достоверность научных положений, рекомендаций и выводов

Обоснованность научных положений, рекомендаций и выводов определяется корректным использованием математического аппарата, согласованностью результатов аналитических и имитационных моделей процессов обучения и компьютерного тестового контроля. Достоверность положений и выводов диссертации подтверждена положительными результатами внедрения работы в ряде крупных промышленных предприятий.

Практическая ценность и реализация результатов работы

Научные результаты, полученные в диссертации, доведены до практического использования в системе переподготовки, повышения квалификации и аттестации кадров для промышленных предприятий. Они представляют непосредственный интерес в области комплексной автоматизации технологических процессов формирования индивидуальных учебных планов и рабочих программ для системы переподготовки.

Разработанные методы и алгоритмы прошли апробацию и внедрены для практического применения в системе переподготовки на ряде промышленных предприятий, а также используются при организации учебного процесса на кафедре «АСУ» МАДИ(ГТУ).

Апробация работы

Содержание отдельных разделов и диссертации в целом было доложено и получило одобрение:

на Российских, межрегиональных и международных научно-технических конференциях, симпозиумах и семинарах (2004-2009гг.);

на заседании кафедры АСУ МАДИ(ТУ).

Совокупность научных положений, идей и практических результатов исследований в области автоматизации образовательного процесса составляет актуальное направление в области теоретических и практических методов формирования учебных планов подготовки персонала.

Содержание работы

Структура работы соответствует списку перечисленных задач, содержит описание разработанных методов, моделей и методик.

Во введении обосновывается актуальность работы. Отмечается необходимость решения задачи формализации учебных планов и разработки методов и моделей тестового контроля. Сформулирована цель работы и основные задачи. Приведено краткое содержание глав диссертации.

 Анализ методов и моделей структуризации учебной информации в системе переподготовки

В первой главе диссертации проводится системный анализ задач, возникающих при организации процессов переподготовки персонала промышленных предприятий. Рассмотрены проблемы автоматизации формирования учебных планов и рабочих программ. Проведен анализ методов и моделей процессов обучения и тестового контроля.

Учебный план представляет собой совокупность учебных модулей с учетом последовательности их предъявления обучаемым. За всеми учебными модулями закреплены тестовые задания, объединенные в тесты. С учетом такой привязки статистика результатов тестового контроля может быть использована для динамического формирования учебного плана для каждого обучаемого с использованием его учебных достижений.

В диссертации показано, что практически все алгоритмы обработки данных системы подготовки должны быть включены в систему моделирования учебного процесса. Информационная система поддержки обучения для адаптации и реализации функций управления должна иметь модели соответствующих подсистем. Таким образом, система моделирования и информационная система должны представлять единый программно-моделирующий комплекс. Особое место в данной постановке занимает имитационный подход и экспертные процедуры оценивания учебного материала, базирующиеся на теории нечетких множеств.

Формирование индивидуального учебного плана

Проведенный в работе анализ показал, что для формализованного представления и структуризации учебных планов и рабочих программ может быть использован анализ связности модулей учебных материалов. Модуль представляет структуру:

M={DM, AM, HM, FD}, где DM - наименование модуля; AM - аннотация модуля; HM - объем часов, выделенных на модуль; FD - указатель дисциплины.

Терм-множество представляет структуру W=WI(WO, где WI - множество входных термов; WO - множество выходных термов. Ww(WI - терм w принадлежит множеству входных термов; Ww(WO - терм w принадлежит множеству выходных термов.

Входные термы определены как: WIw={DIW, FIW, FIW, UIW}, где DIW - идентификатор терма; FIM - указатель принадлежности модулю; FW - ссылка на терм-источник (для организации синонимии термов); UW - коэффициент усиления (определяет увеличение активности использования).

Выходные термы определены как: WOw ={DOW, FOW, FOW. ZOW}, где DOW - идентификатор терма; FOM - указатель принадлежности модулю; FOW - ссылка на входные термы; ZOW - коэффициент забываемости.

Проведенный в диссертации анализ показал, что адаптивные механизмы предъявления тестовых заданий существенно повышают эффективность тестового контроля. Построение таких процедур основывается на универсальной рекуррентной схеме:

где ((n) - сложность задания на n-ом шаге процедуры; F(n) – некоторое функциональное преобразование результатов ответов; ((n)(((1),…, ((n)) – случайная величина, моделирующая ответ на n-е задание.

Данная схема описывает подход к построению множества алгоритмов, различающихся механизмами предъявления заданий и процедурами оценивания. Механизм предъявления дает лишь последовательность заданий различной сложности. Оценивание уровня знаний тестируемого является следующей задачей. В данном случае имеет место два подхода: классификация, когда количество значений оценок тестируемого определено заранее, и оценивание, когда численное значение оценки может быть произвольным.

, где u – уровень знаний, x – время.

Теоретически бесспорно, что для определенного типа учебной информации, имеющей вполне измеримый предел достижений, темп прироста тем меньше, чем выше уровень обученности. Уменьшение темпа может носить линейный или скорее, нелинейный характер. Одна из моделей основана на решении дифференциального уравнения:

где A, B – два положительных параметра, подлежащие определению в процессе статистической обработки результатов обучения и тестового контроля.

В диссертации проведен анализ современных информационных технологий в образовании и рассмотрены компоненты информационно-образовательной среды, представляющие собой системно-организованную совокупность средств передачи данных, информационных ресурсов, протоколов взаимодействия, аппаратно-программного и организационно-методического обеспечения, ориентированную на удовлетворение образовательных потребностей.

 Разработка информационных моделей восприятия и забывания учебной информации

Во второй главе диссертации рассматриваются вопросы построения функциональных соотношений описания индивидуальных свойств обучаемого, которые базируются на моделях восприятия и забывания учебной информации.

загрузка...