Delist.ru

Батиметрический анализ океанов (25.01.2007)

Автор: Казанский Борис Андреевич

Результаты анализа симметрии доказывают единственность полученного автором решения, но вместе с тем, если исходить из правила, что «всякий природный объект по внутренним причинам развивается как тело симметричное» [Шубаев, 1970, с. 109], то современную симметрию-антисимметрию литосферы Земли нельзя объяснять внутренними причинами. А это – серьезное ограничение, накладываемое на возможные варианты объяснения эволюции Земли на этапе океанизации.

Атлантический океан имеет промежуточное значение по площади среди трех океанов, но главенствующее по роли, выпавшей на его долю в разработке и становлении всех мобилистских построений. Начиная с работ А. Вегенера, этому океану обычно отводится роль главной иллюстрации, хотя общее решение проблем происхождения и эволюции океанов целиком завязано на Тихом океане.

По структурно-тектоническим характеристикам Атлантический океан считается самым простым по строению и самым симметричным [Пущаровский и др., 1999], имея в виду долготную симметрию относительно его осевой линии (линии спрединга, она же ось Срединно-Атлантического хребта — САХ). В региональном масштабе выявляются многочисленные отклонения от простых мобилистских моделей и от симметрии рельефа и тектонических структур относительно САХ [Пущаровский и др., 1999; Пущаровский, 2002]. В глобальном же рельефе, как видно на рис. 8 и 11, Атлантический океан имеет и широтную симметрию относительно Тектонического экватора, образуя с Индийским и Северным Ледовитым океаном симметричную водную систему Индо-Атлантического полушария (или сегмента, по [Пущаровский, 1985]).

Рис. 11. Широтная батиграмма Атлантического океана.

Рис. 11 и 12 дают общее представление о батиметрии Атлантического океана: на рис. 14 приводится широтная батиграмма океана, иллюстрирующая широтные различия в распределении глубин в связи с не одновременностью начала раскрытия различных частей океана, а рис. 12 показывает возможность аппроксимации его батиметрической кривой распределением Релея.

Рис. 12. Аппроксимация батиметрической кривой Атлантического океана одним (слева)

и суммой двух распределений Релея (пунктир).

Индийский океан – минимальный по площади среди океанов, целиком расположенный к югу от Тектонического экватора. По структурно-тектоническим характеристикам этот океан считается структурно дисгармоничным или тектонически рассогласованным, с «весьма прихотливым общим контуром» [Пущаровский и др., 1999, с. 75], хотя, как отмечено в разделе «Симметрия…» и заметно на рис. 11, можно говорить о симметрии Индийского океана относительно ортогональной Тектоническому экватору диагональной оси Срединно-океанического хребта, нарушающего глобальную симметрию. В глобальном же рельефе Индийский океан образует симметричную относительно Тектонического экватора пару с северной частью Атлантического океана и Северным Ледовитым океаном, который некоторые предлагают считать просто большим заливом Атлантического океана или его окраинным морем [Леонтьев, 1975]. Даже «нетипичный» Западно-Индийский хребет образует довольно симметричную пару с северной частью САХ.

Структурная дисгармония Индийского океана проистекает из-за наличия «тройной точки» почти в центре океана и отходящего от нее «нетипичного» Западно-Индийского хребта), «экзотичного» хребта 90° и «неупорядоченного» распределения по площади поднятий [Пущаровский и др., 1999], что позволяет авторам делить Индийский океан на 4 «совершенно разных и несопоставимых по строению тектонические области» [там же, с. 75], тогда как рифтогенная система срединных хребтов делит океан естественным образом на 3 сектора: Северо-Восточный, Западный и Южный [Удинцев, 1987]. Формирование Индийского океана проходило на первом этапе под влиянием Атлантического океана с запада, а на втором (кайнозойском) – преимущественно под влиянием Тихого океана с востока.

Батиграммы Индийского океана не выявляют каких-либо особенностей рельефа дна Индийского океана, несмотря на признаваемую сложность его тектоники, явившейся «результатом воздействия большого спектра нелинейных геодинамических эффектов» [Пущаровский и др., 1999, с. 75]. Самым спорным вопросом эволюции Индийского океана (которые некоторые исследователи просто стараются избегать) остается проблема океана Тетис: происходило ли расширение Индийского океана, как и Атлантического, просто за счет раздвига континентальных блоков, либо (и) за счет закрытия Тетиса. Именно решение этой проблемы с учетом принципов симметрии (см. раздел «Симметрия…») предоставило бы возможность окончательного выбора между конкурирующими мобилистскими гипотезами [Казанский, 2001а, 2002б].

Несмотря на структурную дисгармонию Индийского океана, распределения глубин и средние глубины в его западной и восточной половинах оказываются практически одинаковыми – 3679 м и 3710 м соответственно (таблица 1, рис. 13), по аппроксимирующей кривой средняя глубина на 100 м меньше, чем у Атлантического океана, а асимптотически предельная глубина такая же, -5800 м, что подчеркивает общность эволюции двух этих океанов.

Рис. 13. Батиметрические кривые Индийского океана, его восточной (В) и западной (З)

половин. Пунктиром показана кривая распределения Релея, а стрелкой – средняя глубина для него.

Распределение площади базальтов дна Индийского океана по возрасту приводится на общем графике на рис. 26; оно такое же, как и в Атлантическом океане.

Тихий океан – главный океан планеты Земля, не только из-за своей величины, но и по ключевой роли, какая ему досталась (во многом благодаря наличию уникальной активной зоны перехода) в моделях тектонической эволюции планеты. Ему также часто приписывают эпитет «древнейший» при сопоставлении с другими океанами, что абсолютно ничем не доказано, а по распределению S(t) океанической коры по возрасту, показанному на рис. 23, Тихий океан ничем не отличается от других.

В чем исследователи почему-то единодушны, так это в характеристике Тихого океана как асимметричного, с ярко выраженной асимметрией как относительно экватора, так и меридиональной (рис. 14), как морфологической, так и возрастной [Пущаровский и др, 1999; Казанский, 2006]. Вся мезозойская океаническая кора сосредоточена в западной половине Тихого океана (точнее – в северо-западном квадранте) со средней глубиной 3915 м, примерно половина которой приходится на Западно-Тихоокеанскую зону перехода [Казанский, 1999б, 2002а, 2006ж], а вся восточная половина Тихого океана со средней глубиной 3873 м имеет кору только кайнозойского возраста. По дисперсии высот (?2) эти половины различаются вдвое (см. Табл. 1).

Рис.14. Иллюстрация батиметрической асимметрии Тихого океана относительно

экватора и меридиана 150° з.д. (С – батиметрическая кривая северной половины Тихого океана, Ю – батиметрическая кривая южной половины, З – западной, В – восточной) в сопоставлении с суммарной батиметрической кривой в абсолютном масштабе – количестве точек (площадок 13.7 км?), приходящихся на 100-метровый интервал глубин.

Но это единодушие в оценке симметрии (т.е. ее отсутствии) оказывается обоснованным только за счет анализа симметрии по картам в прямой проекции. В косой проекции (рис. 8 и 9) Тихий океан обнаруживает не такую уж плохую симметрию относительно плоскости Тектонического экватора, что подтверждает и попарное подобие батиметрических кривых В-Ю, З-С на рис. 14. Два пика (локальные максимумы) суммарной батиметрической кривой Тихого океана, приходящиеся на интервалы глубин 4300-4400 и 5200-5300 м, соответствуют максимумам батиметрических кривых его асимметричных половин. Теоретически-предельные глубины северной и западной половины, определяющие таковую и всего Тихого океана, равны 6200 м, а в восточной и южной – такие же, как в Атлантическом и Индийском океанах, 5800 м. Долготную и широтную асимметрию Тихого океана иллюстрируют также и соответствующие батиграммы, приведенные на рис. 15.

Диаграммы «с накоплением» дифференциальных двухмерных (долготного и широтного) распределений глубин Тихого океана приведены на рис. 16.

Рис. 15. Долготные и широтные батиграммы Тихого океана в абсолютном и в

относительном масштабе.

Рис. 16. Плотность распределения глубин Тихого океана по 10-градусным долготным и

по 5-градусным широтным зонам в абсолютном и в относительном масштабе.

Широтная батиметрическая поверхность Тихого океана и ее проекция на горизонтальную плоскость показаны на рис. 170. Главный максимум плотности широтного распределения (67300 точек, или 922 тыс. км2, или 9.12% площади широтной зоны 0-5° с.ш.) приходится на интервал глубин 4.5-5 км, совпадающий с локальным минимумом на батиметрической кривой Тихого океана и с глубинами Восточной котловины. Второй максимум с глубинами 5.5-5.6 км на 20° с.ш. соответствует модальным глубинам Филиппинской и Северо-Западной котловин. Оба эти максимумы находятся в полосе, приуроченной к Тектоническому экватору – линии тренда максимумов на рис. 17. Тренд относительного минимума на этой батиметрической поверхности соответствует второй, параллельной полосе, смещенной на 30° к югу и совпадающей с длинной осью древнего поднятия Дарвина. Она проходит через поднятия Каролинских островов, вала Капингамаранги, островов Кука, Туамоту, самую широкую часть Восточно-Тихоокеанского поднятия и по Чилийскому поднятию.

Рис. 17. Широтная батиметрическая поверхность Тихого океана и ее проекция на

плоскость h? в абсолютном масштабе.

О долготной батиметрической поверхности можно судить по рис. 4 и 5 для глобального рельефа.

Более детальный анализ рельефа дна Тихого океана выполнен в работе по 5-градусным широтным и 10-градусным долготным зонам, по трапециям 5х10° и 5х5° отдельных широтных танссектов с расчетом нескольких статистических характеристик, а также для Западно-Тихоокеанской переходной зоны, представляющей особый интерес. В отличие от Атлантического и Индийского океанов, распределение глубин по широтным и долготным зонам, даже пересекающим все возрастные границы, характеризуется очень большим разнообразием графиков, не имеющих подобия с графиками для всего океана, которые аппроксимируются распределением Релея [Казанский, 1973…2006].

Западно-Тихоокеанская переходная зона, занимающая около 6% от общей площади поверхности Земли, является ключевой зоной и самой сложно устроенной частью Тихоокеанского подвижного пояса, соотношение которого с глобальным рельефом было видно на рис. 8. По определению Л.А.Маслова, «Тихоокеанский подвижный пояс суть деформированная в ходе тектонических движений относительная узкая область – окружность большого круга – разделяющая два полушария, различия между которыми определяют меридиональную антисимметрию Земли» [Маслов, 1996, с. 147]. Эта окружность соответствует плоскости антисимметрии Р? на рис. 8.

Западно-Тихоокеанская переходная зона (ЗТПЗ), на которой апробируются различные геоморфологические, тектонические и геофизические модели [Казанский, 1992а, 2006ж], включает окраинные моря востока Азии, Австралии и Австрало-Азиатские (Индонезийские) моря, существенно различающиеся по размерам. Поэтому, для удобства площадных сопоставлений, мелкие Индонезийские моря были объединены в две группы – северную и южную. Расчетные границы анализировавшихся морей и транссектов ЗТПЗ показаны на рис. 18, а на рис. 19 приведены нормированные батиграфические кривые этих морей и ненормированные батиметрические графики. Рис. 19 показывает существенные различия батиметрии всех морей ЗТПЗ: вопреки результатам многолетней давности, полученным на основе картометрических данных для 500-метровых интервалов [Ларина, 1968], где батиграфические кривые разделены на три типа (выпуклые, вогнутые и прямолинейные), практически нет ни одной пары объектов с одинаковыми (подобными) батиметрическими и батиграфическими кривыми, т.е. в формировании рельефа дна морей ЗТПЗ элементы случайности превалируют над общими закономерностями. Более-менее близки только батиграфические кривые Южно-Китайского моря (6) и южной группы Индонезийских морей (8), и батиграфические кривые Кораллового (10) и Соломонова (9) морей, которые морфологически вообще можно было объединить в один объект. Суммарная батиграфическая кривая ЗТПЗ, показанная на рис. 19 пунктиром, очень близка к батиграфической кривой северной группы Индонезийских морей (также являющейся суммой нескольких морей). Среди батиграфических кривых особенно резко выделяются кривые Берингова (1) и Филиппинского морей (5): первая имеет максимальную крутизну (резко сокращенная доля промежуточных глубин), пересекая другие кривые, а вторая вообще располагается вне всех остальных кривых за счет аномально большой глубины при аномально малой доле шельфовых глубин (менее 2% в интервале 0-100 м). Филиппинское море вообще выглядит на рис. 19 как чужеродный элемент среди других морей. Батиграфическая кривая моря Фиджи (11) также пересекает несколько других кривых, но уже за счет меньшей крутизны.

Рис. 18. Карта расчетных границ морей Западно-Тихоокеанской переходной зоны:

1 – Берингова моря, 2 – Охотского моря, 3 – Японского моря, 4 – Восточно-Китайского моря, 5 – Филиппинского моря, 6 – Южно-Китайского моря, 7 – северной группы Индонезийских морей, 8 – южной группы Индонезийских морей, 9 – Соломонова моря, 10 – Кораллового моря, 11 – моря Фиджи, 12 – Тасманова моря. Пунктиром обозначены границы анализируемых транссектов.

Рис. 19. Нормированные батиграфические кривые морей Западно-Тихоокеанской

переходной зоны (слева) и их ненормированные батиметрические графики (справа) для глубин больше 200 м. На круговых диаграммах показано распределение площади глубин 0-200 м (слева) и полных площадей морей. Цифровые обозначения соответствуют карте на рис. 18.

Соответствующая ей батиметрическая кривая не имеет четкого максимума. Батиметрическая кривая Берингова моря (1) имеет четкий пик в интервале глубин 3,5-4 км, проявляющийся и на суммарной батиметрической кривой, а батиметрическая кривая Филиппинского моря (5) – типичное бимодальное распределение с локальными максимумами в интервалах глубин 4,5-5 км и 5,5-6 км. Последний максимум, обусловленный глубинами Филиппинской котловины (т.е. западной частью Филиппинского моря с «океанической» асимптотически-предельной глубиной, лежащей полностью за пределами глубин остальных морей ЗТПЗ. Уже на этом основании (не учитывая спрединг в этой котловине) глубины западной части Филиппинского моря можно называть океаническими, а переходной зоне по глубинам и морфологии соответствует только восточная часть Филиппинского моря, включающая островные дуги и котловины Нампо и Западно-Марианская, хотя средние глубины обеих частей Филиппинского моря (4644 и 4017 м) больше, чем средняя глубина Тихого океана. Примечательно, что максимальные значения плотности вероятности распределения глубин Филиппинского моря оказались такими же, как и в распределениях глубин всех океанов, т.е. на уровне 3.5-4%, но характер распределения существенно отличается от всех океанов.

Среди батиметрических кривых на рис.19 также выделяется кривая Тасманова моря (12), имеющая два пика – в интервале 1,4-1,5 км и 4,6-4,7 км. Первый соответствует глубинам подводных хребтов Лорд-Хау и Норфолк, а второй, более «мощный», - зоне кайнозойского спрединга в Тасмановой котловине, разделяющей этот сектор ЗТПЗ на две разные части – зоны перехода пассивного и активного типов. Глубины этого пика совпадают с глубинами восточной части Филиппинского моря и локальным максимумом Кораллового моря (10), но опять же – с локальным минимумом батиметрической кривой Тихого океана. Филиппинское и Тасманова моря из-за их большой площади определяют в основном и вид суммарного распределения переходной зоны, показанного на рис. 19 пунктирной линией. Отсутствие общих закономерностей в форме распределений глубин морей ЗТПЗ связано, вероятно, с тем, что большая часть из этих морей (морских впадин) генетически и в геоморфологическом смысле не является самостоятельными (изолированными) системами, а являются частями более сложных систем или комплексов, включающих и участки суши [Казанский, 1997]. Поэтому и закономерности в распределениях глубин морей переходной зоны следует искать в ином контексте (в иных границах). Анализ вариантов [Казанский, 2006ж] показал, что весьма информативными являются батиметрические и батиграфические кривые (графики) для 5-градусных широтных полос (транссектов), пересекающих ЗТПЗ, имеющую в общем-то долготное простирание.

В подтверждение сказанному на рис. 20 представлены ненормированные батиметрические графики и нормированные батиграфические кривые для пяти широтных транссектов северной части ЗТПЗ от 35° до 60° с.ш. с выходом в Тихий океан, границы которых показаны пунктиром на рис. 18 (аналогичные и более детальные данные представлены в работе и для остальных транссектов, указанных на рис. 18). Здесь уже четко просматривается корреляция и определенная закономерность в распределениях глубин: для 4 из 5 транссектов океанические глубины (>5 км) отделены от глубин морей переходной зоны широким и глубоким минимумом на батиметрических графиках (самая северная полоса 1, 55-60° с.ш., не выходит в океан, а заканчивается в Командорской котловине Берингова моря) и ступенью на батиграфических кривых. Глубины морей переходной зоны ограничены (снизу) уровнем около 4 км, а океанические – уровнем около 5 км (сверху). Смещение вверх «океанического» максимума в полосе 3 обусловлено подводной возвышенностью Шатского. Обращает на себя внимание сходство распределений глубин в полосах 3 (45-50°) и 4 (40-45° с.ш.). Первая пересекает южную (наиболее глубокую) часть Охотского моря, а вторая – северную (тоже самую глубокую) часть Японского моря. Сходство распределений позволяет говорить об общем происхождении (общей природе) глубоководных котловин этих морей. Выход транссектов на океанические глубины порядка 6 км нормализует батиграфические кривые и по глубине, что позволяет их классифицировать, а также выстаивать определенные эволюционные последовательности кривых более объективно, чем это было сделано ранее [Казанский и др., 1985].

Рис. 20. Ненормированные батиметрические графики для глубин >200 м и

нормированные батиграфические кривые 5-градусных широтных транссектов от береговой линии до выхода в океан, показанных на рис. 18, от 60° (1) до 35° (5) с.ш.

загрузка...