Delist.ru

Особенности трансформации гумусовых веществ в разных условиях землепользования (на примере дерново-подзолистой почвы) (20.08.2007)

Автор: Овчинникова Мария Фёдоровна

трубопровода 2,6 0,6 2,0 5,2

Примечание: над чертой – исходная почва;

под чертой – деградированная почва

Признаки деградации гумуса мелиорированной почвы в целом имели однотипный характер независимо от микрорельефа. Различия в глубине негативных изменений характеристик гумуса в почвах повышенных и пониженных участков обусловлены неодинаковой степенью разбавления верхней части профиля почвенной массой из иллювиальных горизонтов и исходной неоднородностью показателей.

4.5. Изменение гумусного состояния дерново-подзолистой почвы после строительства магистрального трубопровода

Преимущественное нарушение условий гумификации после прокладывания трассы магистрального трубопровода (МТ) на глубине около 2м и проявление механической деградации гумуса связаны с изменением состава минеральной части и гранулометрического состава почвы. Нарушение имеет более глубокий характер в сравнении с действием агротехногенного фактора вследствие перемешивания не только почвенных горизонтов, но и материнской, и подстилающей пород, неблагоприятные свойства которых в значительной степени определили свойства образовавшейся техногенной почвы. Через год после строительства МТ в верхней части техногенного профиля отмечены утяжеление механического состава за счет илистой фракции, снижение содержания частиц мелкой, средней и крупной пыли; повышение плотности; более глубокие негативные изменения характеристик ППК и бoльшие масштабы потерь гумуса и ГК по сравнению с агротехногенно-нарушенной почвой [40; 43; 44]. По снижению запаса гумуса в 40-см слое техногенная почва охарактеризована как сильнодеградированная. Более 60% потерь гумуса приходится на пылеватые частицы, что связано с уменьшением их количества и снижением уровня гумусированности. Долевое участие фракций пыли в общем балансе гумуса в пределах 40-см слоя снизилось от 51 до 28 %, в то же время долевое участие ила возросло от 19 до 46 %. Интегральным отражением перераспределения роли фракций ЭПЧ в балансе гумуса и ухудшения его качества является 3,0-3,6- кратное снижение показателя С1-10/С<1 (рис.4.8). Ослабление признака гуматности гумуса и усиление фульватного характера проявились в снижении степени и глубины гумификации (с изменением уровня признаков и неблагоприятной сменой типа гумуса), усилении признака подзолистого типа фракционного распределения гуминовых кислот, возрастании степени агрессивности фульвокислот [40; 43; 44], ослаблении процессов новообразования ГК и полимеризации гумусовых структур (рис.4.8). Снижение запаса ГК из 40-см слоя составило 76 % к исходному уровню, что в 2-2,6 раза превысило относительные размеры потерь ГК в мелиорированной почве (табл.4.5). Большая часть потерь приходится на ГК1 (58 %), меньшая – на ГК2 (22 %) и ГК3 (20 %).

Результаты многолетнего изучения состояния гумуса при неблагоприятных воздействиях дают основание характеризовать деградацию гумуса как ослабление процессов гумусообразования и гумификации, приводящее к негативным изменениям характеристик гумуса на разных уровнях его структурной организации. Главным и наиболее характерным признаком деградации гумуса, общим для всех видов неблагоприятных воздействий, является дегумификация. В широком значении понятие «дегумификация» рассматривается как ослабление процесса гумификации на разных стадиях формирования гуминовых кислот, приводящее к снижению содержания, изменению состава и упрощению структуры ГК. Степень выраженности деградационных изменений гумуса на разных иерархических уровнях, характер ответных реакций гумусовых кислот, направленность в изменении их свойств четко детерминированы природой факторов и спецификой нарушения условий гумификации. Химическая, физико-химическая и биохимическая деградация гумуса, фиксируемая при агрогенных воздействиях, связана с трансформацией ГК на уровне молекулярных структур; механическая деградация, фиксируемая при водно-эрозионных и техногенных воздействиях, обусловлена в основном количественным перераспределением фракций ЭПЧ, характеризующихся разнокачественным гумусом.

Глава 5. Способы оптимизации гумусного состояния деградиро-ванных дерново-подзолистых почв

Традиционным способом сравнительно быстрого восстановления гумусного состояния деградированных дерново-подзолистых почв является применение органических удобрений (ОУ), при необходимости в сочетании с известкованием. С этой целью нами использован торфонавозный компост (ТНК, при соотношении компонентов 1:1), содержащий гумифицированные и полугумифицированные вещества в оптимальном соотношении, щелочноземельные основания, азот (табл.5.1). Торф содержит больше ГК в сравнении с навозом, в то же время ГК навоза являются более ароматичными (рис.5.1).

Применение известково-органоминеральной системы удобрений при 4-летнем возделывании кукурузы способствовало сохранению, а по ряду показателей – улучшению свойств почвы по сравнению с исходным состоянием. Положительные изменения условий гумификации – увеличение количества гумусообразователей и обменных оснований, снижение

Таблица 5.1. Свойства и состав компонентов

торфонавозного компоста.

Показатели Навоз Торф

1. рНсол 6,5 6,8

2. Са, мг-экв/100г сухого вещества

3. Mg, то же 8,3

10,2 59,8

4. Азот, % к сухому веществу

5. Органическое вещество, то же 0,5

25,5 1,5

% к Сорг.

6. Водорастворимые вещества

7. Гумусовые кислоты

8. Гуминовые кислоты

9. Вещества, гидролизуемые

1н Н2SO4

10. Вещества, гидролизуемые

80%-ной Н2SO4

11. Негидролизуемый остаток

12. Сгк : Сфк 0,57 1,92

13. ВМК : СМК 0,79-

1,11 1,88-

Рис.5.1. Гель-хроматограммы гуминовых кислот,

выделенных из торфа (а) и навоза (б)

кислотности – благоприятствовали накоплению гумуса и улучшению его качества [33; 34; 40; 44; 49]. Применение ОУ и извести сдерживало процессы дезагрегирования тонкодисперсных частиц, способствовало аккумуляции гумуса в мелко- и среднепылеватых частицах. На фоне сохраняющейся тенденции большего участия илистой фракции в балансе гумуса в варианте с ТНК зафиксировано возрастание роли пылеватых частиц и соответственно отношения С1-10/С<1 [56]. Позитивные изменения направленности процесса гумификации проявились в активизации обеих стадий – новообразования ГК и полимеризации гумусовых структур, что соответствует доминирующей роли ГК (56 %) и, главным образом, первой и второй фракций, в пополнении запаса гумуса в пределах 40-см слоя. По данным гель-хроматографии наиболее отзывчивыми на агромероприятия являются периферические лабильные структуры ГК (рис.5.2). Отчетливо выраженное в пахотном слое возрастание относительной доли ВМК в составе ГК может быть связано как с активизацией микробиологической деятельности, так и с привнесением высокомолекулярных структур с ОУ. Среди фракций ГК оптимальным сочетанием лабильной (периферической) и стабильной (ядерной) структур характеризуются ГК1 и ГК2, что обусловливает их доминирующую роль в обеспечении ценных качеств гумуса. Во всех фракциях ГК независимо от варианта опыта с глубиной уменьшается количество ВМК и возрастает относительная доля СМК, что связано с естественной трансформацией органических веществ в профиле почвы и снижением интенсивности биохимических процессов [44]. Положительные изменения практически всех параметров плодородия в варианте с известково-органоминеральной системой коррелируют с максимальной продуктивностью агроценоза кукурузы (рис.5.3). В ряду агроценозов кукурузы с разным уровнем продуктивности выявлена тесная положительная корреляционная взаимосвязь урожая зеленой массы кукурузы с

0-20см 20-40см 40-60см

0-20см 20-40см 40-60см

а- ?; б - ?

Рис.5.2. Гель-хроматограммы ГК после 4-летней культуры кукурузы [32, 44].

а – контроль без агрохимических средств;

загрузка...