Delist.ru

Новые технологии получения и переработки электродных материалов для ни-кель-кадмиевых аккумуляторов (17.09.2007)

Автор: Волынский Вячеслав Виталиевич

Рис. 9. Кривая распределения количества изготовленных электродов по степени их заполнения активным материалом

Как следует из рис.8, дальнейшее увеличение толщины никелевого покрытия приводит к снижению эффективности заполнения порового пространства металловойлочного ОНЭ. Анализ рис. 8, 9 показывает, что толщина никелевого покрытия основной массы электродов (более 50 %) находится в пределах 5,85/7,54 мкм, которые, согласно расчетам, являются оптимальными.

Таким образом, накопление статистических данных и разработанная методика их математического анализа позволили определить оптимальную толщину никелевого покрытия металловойлочной основы, нанесенного гальванически. Актуальность этой проблеме придает тот факт, что стоимость никелевых анодов, расходуемых на металлопокрытие, составляет 22,5 % от стоимости всего электрода.

Глава 4. Активация металловойлочного оксидноникелевого электрода

Разработанные НИИХИТ никель-кадмиевые аккумуляторы в габаритах НКБН-25, в которых электродной подложкой для ОНЭ служит химически, а затем и гальванически никелированное полотно из ионообменных щелочестойких волокон, имели не высокую удельную емкость (около 30 А·ч/кг) и ресурс 300-600 циклов. Предварительные результаты послужили основанием для продолжения исследовательских работ по поиску путей повышения удельных, мощностных и ресурсных характеристик НКА с металловойлочными электродами.

Изучение влияния соединений кобальта на электрохимическое поведение НКА с металловойлочными ОНЭ

Кобальт в электроды прессованной и ламельной конструкций, согласно действующей технологии, добавляют в виде порошка гидроксида кобальта (II) в смеси с гидроксидом никеля (II) на стадии приготовления активной массы; электроды металлокерамической конструкции пропитывают в растворе солей кобальта (II). Нерациональность первого способа заключается в том, что Co(OH)2 имеет ограниченный срок годности. Окисляясь кислородом воздуха до CoHO2, он со временем теряет свои активирующие свойства. Второй способ является наиболее оптимальным для электродов различной конструкции при условии предварительной формировки аккумуляторов со сменой электролита.

С учетом специфики металловойлочной подложки в настоящей работе активный материал наносили в виде пасты на основе полимерного водорастворимого связующего (ПВС), раствора сульфата кобальта и наполнителя (мелкодисперсного порошка Ni(OH)2). В связи с этим в технологическую документацию введены параметры по вязкости ПВС и дисперсности наполнителя.

Для оценки эффективности протекания электрохимических процессов на металловойлочных ОНЭ, активированных сульфатом кобальта, были собраны пять макетов аккумуляторов в габаритах НКБН-25. Уже на втором цикле формировки отдаваемая аккумуляторами емкость достигла 32,9 А?ч, коэффициент использования составил 77 %, а удельная энергия 41,3 Вт?ч/кг. К десятому циклу макеты были полностью расформированы и обладали следующими характеристиками: емкость 38,4 А?ч, коэффициент использования активной массы 89 %, удельная энергия 48 Вт?ч/кг.

Условия и результаты проведенных испытаний трех вариантов аккумуляторов, отличающихся друг от друга способом введения кобальта (1-й вариант – из раствора CoSO4, 2-й – добавка Coмет и 3-й – добавка Co(OH)2) – отражены в табл. 8.

По своим удельным параметрам разработанные аккумуляторы превосходят характеристики НКА с ламельными ОНЭ и только на больших токах разряда уступают источникам с электродами металлокерамической конструкции (рис. 10). В последующем аккумуляторы были поставлены на наработку по режиму МЭК. Достигнутый ресурс составил 1700 зарядно-разрядных циклов (рис. 11).

Таблица 8

Удельная энергия (W) и емкость (C) никель-кадмиевых аккумуляторов

в габаритах НКБН-25 с металловойлочными оксидноникелевыми электродами

в зависимости от тока разряда и способа введения активирующей добавки

Вариант

активации Ток разряда, А

5 12,5 25 50 125

Вт?ч/кг С,

Вт?ч/кг С,

Вт?ч/кг С,

Вт?ч/кг С,

Вт?ч/кг

CoSO4 37,6 47,9 32,0 40,9 31,5 40,2 27,5 35,6 21,2 27,3

Coмет 28,3 35,7 27,7 35 25,5 32,2 21,7 27,4 7,3 10,8

Co(OH)2 27,5 35,5 26,6 34,4 23,9 30,9 19,0 24,5 3,2 4,2

Рис. 10. Влияние конструкции электрода и способа введения кобальта в его активную массу на удельные характеристики НКА:

P- удельная мощность (Вт/кг), W- удельная энергия (Вт(ч/кг).

Рис. 11. Зависимость емкости НКА в габаритах НКБН-25 с металловойлочными оксидноникелевыми электродами, активированными различными добавками кобальта, от количества циклов наработки режимом МЭК: электрод: 1-через раствор CoSO4;

2-введение Coмет; 3-введение Co(OH)2

Из результатов циклирования НКА в габаритах НКБН-25 с металловойлочными ОНЭ следует, что по степени положительного влияния на ресурс долговечности аккумуляторов способы активирования гидроксида никеля (II) кобальтом можно расположить в ряд: раствор CoSO4 (1700 циклов)?Coмет (600 циклов)?Co(OH)2 (300 циклов).

В результате проведенных исследований удалось достичь упрощения технологии приготовления паст, снять ограничения по сроку сохранности кобальтсодержащей добавки и сократить продолжительность формировки аккумуляторов. Повышение мощности и емкостных параметров НКА с металловойлочными основами позволяет значительно расширить сферу их применения. Уже сейчас такие батареи могут быть использованы, в частности, для запуска авиационных, карбюраторных и тепловозных дизельных двигателей, в электротранспорте промышленных предприятий, в радиопередатчиках и сигнальных установках.

Совместное влияние добавок цинка (II) и кобальта (II) на работу

металловойлочного оксидноникелевого электрода

Исследованию влияния цинка на характеристики ОНЭ различных конструкций посвящено достаточно большое количество работ. В последнее время интерес к этой проблеме возрастает в связи с возобновлением попыток создания никель-цинковых аккумуляторов с увеличенным сроком службы. Однако сведения об эффективности и механизме влияния Zn (II) на характеристики ОНЭ крайне противоречивы.

С целью оптимизации состава активной массы электродов, учитывающего особенности поведения полимерной подложки в условиях работы ОНЭ были проведены исследования способов активации металловойлочного ОНЭ комбинированными добавками соединений Zn (II) и Co (II).

По результатам ресурсных испытаний макетов аккумуляторов изготовленных в габаритах НКБН-25, можно сделать вывод, что добавка цинка независимо от способа ее введения способствует увеличению числа зарядно-разрядных циклов, при котором достигается максимальный коэффициент использования никеля в ОНЭ. Следует отметить, что при этом работоспособность на больших плотностях тока у аккумуляторов c металловойлочными ОНЭ, активированными комбинированной добавкой кобальта (II) и цинка (II), несколько выше варианта, в котором ОНЭ активированы только добавкой сульфата кобальта.

В ходе ресурсных испытаний было отмечено существенное изменение разрядной кривой при токе 125 А (рис. 12). Сравнение кривых 1 (после 10 циклов) и 2 (после 500 циклов) аккумуляторов второго варианта свидетельствует о значительном облегчении процесса катодного восстановления, обусловленном уменьшением фазовой поляризации при переходе от продуктов анодного окисления к продуктам катодного восстановления в связи с образованием совместных гидроксидов никеля-цинка.

Таким образом, совокупность литературных и экспериментальных данных позволяет сделать предположение о механизме влияния Co и Zn на характеристики металловойлочного ОНЭ. При введении в состав активного материала вышеназванных соединений в ходе циклирования НКА происходит образование их смешанных гидроксидов Co(OH)2 и Zn(OH)2, осаждающихся на поверхностных гранях кристаллов Ni(OH)2. В связи с этим эффективность активации непосредственно зависит от растворимости изначально выбранного соединения. В дальнейшем Co(OH)2 последовательно проходит стадии растворения в электролите, последующего комплексообразования, окисления гидроксокомплексов двухвалентного кобальта в трехвалентный с образованием CoHO2,

Рис. 12. Разрядные кривые НКА в габаритах НКБН-25 с металловойлочными ОНЭ активированными соединениями кобальта (через CoSO4; Co - 3,5 %) и цинка (соосаждением; Zn – 2 %) на различных циклах:

загрузка...