Delist.ru

Газообмен и баланс СО2 биогеоценозов сосняков и дубрав при изменении атмосферных условий и влагообеспеченности (17.08.2007)

Автор: Молчанов Александр Георгиевич

0.5 278

Таблица 4. Фитомасса и годичный прирост дуба в осоко-снытьевой дубраве, т га- 1 [Ильюшенко и др., 2001].

Фракции древостоя Фитомасса, (т га-1) Годичный прирост, (т га-1)

За (1981-1990гг)

Стволы

Подземная часть *

Общая фитомасса

180 3.9

* По выровненным литературным данным [Ильюшенко и др., 2001].

Таблица 5. Распределение листовой массы [Селочник и др., 1994], площади проекции крон, листового индекса (LAI) и удельной поверхности листьев (м2 в расчете на кг сухой массы) и LAI побегов в трех слоях полога осоко-снытьевой дубравы.

Слой полога Массы

листьев,

т га-1 Проек-ция крон

га га-1 Удельная поверхность листьев,

м2 кг-1 LAI облиствен-ных побегов,

Верхний Средний

Весь полог

древостоя 0.71

3.21 0.13

4.28 10.2

Среднее

ГЛАВА 3. МЕТОДИКА ИССЛЕДОВАНИЙ

3.1. Методика исследования газообмена СО2

При изучении фотосинтеза в естественных условиях на неотделенных частях растения нами использовались открытые камеры; одновременно регистрировали параметры окружающей среды.

Определение фотосинтеза с помощью инфракрасного газоанализатора ГИП-10МБ проводилось на несколько уровнях полога насаждения (обычно на трех), для чего полог по вертикали разделялся на три равные части. В хвойных насаждениях интенсивность фотосинтеза определяли на охвоенных побегах разных лет жизни. Газообмен СО2 в дубраве определяли на интактных облиственных побегах с площадью листьев 7-12 дм2 и площадью проекции побега 3-6 дм2, или на одном неотделенном листе. Камеру для измерения фотосинтеза устанавливали в южной световой верхней части кроны или в теневой части внутри кроны. Более подробно методика определения фотосинтеза опубликована в работах [Молчанов, 1983, 2000, 2005]. Для регистрации показаний газообмена, температуры и влажности воздуха и солнечной радиации использовали электронный регистратор (logger EMS, Брно) с дальнейшей записью на ЭВМ или на электронные самописцы типа КСП-4. В камере создавали небольшое обеднение СО2 в воздухе (3-10% от исходной величины), скорость воздухообмена была относительно высокой (до 3000 л ч-2), и в результате этого перегрев воздуха в камере по сравнению с входящим в камеру воздухом был незначительным, обычно 2-4о. Ночью для регистрации дыхания облиственных побегов воздухообмен снижали в 10 раз.

Для определения газообмена ствола или ветвей использовали камеры открытого типа укрепленные на стволе. Эмиссию СО2 с поверхности стволов регистрировали инфракрасным газоанализатором типа «Кедр» (Москва) с чувствительностью = ± 10 ppm. Для измерения температуры коры мы использовали термопару сталь-константан. Запись показаний производили с помощью логгера на компьютер типа ноутбук.

В южно-таежных сосняках эмиссию СО2 из почвы оценивали с помощью экспозиционной камеры емкостью 190 л, закрывающая 0,3 м2 поверхности почвы. Оценку эмиссии СО2 из почвы рассчитывали по приросту концентрации СО2 в камере при равномерном ее увеличении. Расчет производили по формуле:

R= (K1-K2) (V +P)*S-1

Где: K1- первоначальная концентрация СО2 и камере, мг СО2л-1; K2 - концентрация СО2 в экспозиционной камере через полчаса с начала исследования, мг СО2 л-1; V - объем экспозиционной камеры, л; P - количество воздуха, отобранного из камеры за время экспозиции, л; S - площадь поверхности почвы в камере, м2. [Молчанов, 1987, 1990].

Для определения интенсивности дыхания корней и эмиссии СО2 из почвы в дубовом насаждении использовали методику без извлечения корней из почвы. Дыхание корней определяли, как разность в интенсивности эмиссии СО2 на участках с ненарушенной почвой и на участке, где корни древесных растений были ранее извлечены. Участок почвы без напочвенного покрова размером 0.5 * 0.5 м был огорожен асбоцементными плитами на глубину 0.5 м, из этого объема почвы за 5 лет до эксперимента были извлечены корни всех высших растений. С этого участка и с участков, находившихся рядом с ненарушенной почвой, определяли интенсивности эмиссии СО2 с поверхности почвы. Вынос СО2 с поверхности почвы определяли открытой камерой в токе воздуха, определение СО2 определяли инфракрасным газоанализатором типа «Кедр» или ГИП-10 (Москва).

3.2 Радиационный режим древостоя

Методы изучения радиационного режима в растительном покрове в настоящее время разработаны достаточно полно [Алексеев 1963; Раунер, 1965, 1966; Руднев, 1965,1966; Выгодская,1967; Тооминг, Гуляев, 1967; Цельникер, 1969; Галенко, 1983; Молчанов,1983; Молчанов, Молчанова, 2005 и др.].

Радиационный режим соснового насаждения изучался нами в течение 1974 г. и 1995 г. В 1974 и 1975 гг. Датчики, термоэлектрические пиранометры Янишевского, устанавливались на градиентной вышке на 3 м выше полога (20 м), в верхнем слое полога (15,5м), в среднем (13,5м) и в нижнем (11,5 м). Запись данных производилась потенциометром типа КСП-4 [Молчанов, 1983]. В сосновом древостое суммарная солнечная радиация в 1974 и 1975 гг. регистрировалась в течение всего вегетационного периода. В 1995г в сосняке кислично-черничном и в сосняке пушицево-сфагновом определяли ФАР только под пологом древостоя. Для регистрации радиации использовали люксметр Ю-16. Определения проводили в течение дневного периода в безоблачный день через два часа. Регистрация проводилась в каждом насаждении через 1 м. в 200 точках. Используя величины относительного поглощения ФАР слоями полога сосняка чернично-кисличного, и его сезонное изменение в 1974 и 1975 гг., а также данные поступления радиации, полученные обсерваторией Московского Университета в 1995г., мы пересчитали поглощение ФАР в трех слоях полога в течение каждого дня за вегетационный период 1995 г. В разреженном сосняке пушицево-сфагновом полог древостя не разделяли послойно, а сезонный ход радиации приняли таким же, как в сосняке чернично-кисличном. [Молчанов, 1999, Molchanov, 2002].

В дубовом насаждении в августе 1986 г. для оценки распределения солнечной радиации внутри полога установлено 58 пиранометров Янишевского; информация с них записывалась информационной системой К-200. Показания регистрировались через 2 мин круглосуточно. Два датчика были установлены выше полога древостоя на 5 м, один для регистрации падающей, другой – для отраженной солнечной радиации. Вокруг дерева каждого класса роста (I - IY класса) и под каждым слоем полога (под верхним на высоте 19 м, под средним на высоте 16 м и под нижним на высоте 13 м) по сторонам света установлены по 4 датчика. Кроме того, под каждым из слоев полога установлено по одному датчику, регистрирующему отраженную радиацию. Регистрация солнечной радиации проводилась при ясной погоде.

3.3. Предрассветный водный потенциал листьев как показатель влагообеспеченности деревьев.

Для того чтобы выбрать показатель, наиболее четко характеризующий условия влагообеспеченности деревьев, проводились одновременные определения ПВПЛ и водного потенциала почвы в течение 1987-1997 гг. опыты. Они показали, что в связи с тем, что в южной лесостепи распределение влажности по глубине сильно различается, то по показателям почвенного увлажнения трудно судить о том, насколько деревья обеспечены влагой. Лучшим показателем для этого является предрассветный водный потенциал листьев (ПВПЛ). [Молчанов, Молчанова, 2000]. Установлено наличие тесной корреляция фотосинтеза за день с ПВПЛ. [Молчанов, 2002]. Водный потенциал листьев определяли с помощью камеры давления [Scholander et al., 1965; Рахи, 1973], водный потенциал почвы - криоскопическим методом [Судницын, 1966], для регистрации показаний термопары использовали цифровой микровольтметр.

ГЛАВА 4. ЗАВИСИМОСТЬ ИНТЕНСИВНОСТИ ФОТОСИНТЕЗА ОТ УСЛОВИЙ ОКРУЖАЮЩЕЙ СРЕДЫ

4.1 Зависимость фотосинтеза от внешних и внутренних факторов

Изучение зависимости фотосинтеза от внешних условий – основное направление современной лесной физиологии. Эти исследования являются основой для расчета фотосинтетической продуктивности (GPP) насаждений. Обзор литературы показывает, что основными внешними факторами, от которых зависит интенсивность фотосинтеза, являются интенсивность ФАР и водный режим растений. Условия влагообеспеченности изменяют влияние света на интенсивность фотосинтеза. В настоящее время на основании зависимости фотосинтеза от внешних факторов широко развивается моделирование процессов фотосинтеза и расчет его интенсивности на основании метеорологических показателей.

4.2.Экспериментальные исследования зависимости фотосинтеза от факторов окружающей среды.

загрузка...