Delist.ru

Методы и средства неразрушающего теплового контроля температурно-временных характеристик структурных превращений в полимерных материалах (15.09.2007)

Автор: Майникова Нина Филипповна

Рис. 4 Термограмма 1 (рис. 3)

с выделенными участками

Первому участку соответствует одномерное температурное поле в локальной области исследуемого тела (вблизи нагревателя). Тепловые потоки, поступающие в изделие (q1) и зонд (q2), изменяются во времени, так как между нагревателем и исследуемым телом имеется термическое сопротивление, нагреватель обладает инерционностью. Второму участку отвечает одномерное температурное поле, но процесс проходит стадию регуляризации в локальной области исследуемого тела, расположенной вблизи нагревателя и термоприемников. Третьему участку соответствует двухмерное температурное поле в образце, поскольку нельзя пренебречь распространением тепла в радиальном направлении. Четвертому участку соответствует тепловой процесс, вышедший на стадию регуляризации. В локальной области исследуемого ПМ формируется температурное поле, близкое к одномерному полусферическому. На пятом участке нарушаются условия полуограниченности исследуемого тела.

После отключения нагревателя (( > (откл), на стадии остывания, можно выделить шестой участок, когда тепловые потоки q1 и q2 изменяются во времени, седьмой участок термограммы, тепловой процесс в котором проходит стадию регуляризации, и восьмой участок, где тепловой процесс изменяется.

Участки термограммы II, IV и VII – рабочие, так как вне области структурного превращения в ПМ возможно однозначно определить значения ТФС в зависимости от параметров аналитических моделей, описывающих термограмму на данных температурно-временных интервалах, используя регулярные тепловые режимы на моделях плоского и сферического полупространств.

Для разработки математических моделей определения ТФС материалов при НК использована следующая аналогия развития теплового процесса: на начальной стадии развития теплового процесса рассматривается задача о распространении тепла от бесконечного плоского нагревателя с удельной поверхностной мощностью q в плоском полупространстве (модель А); при больших значениях ( – в предположении, что плоский круглый нагреватель заменен эквивалентным ему поверхностным сферическим, рассматриваются задачи о распространении тепла в сферическом полупространстве (при нагреве и остывании – модели B и C).

Постановки краевых задач теплопроводности по моделям A, B и С представлены в диссертации. Решения задач, описывающие процесс распространения тепла в исследуемом объекте контроля (первое тело) по моделям А, В, С для поверхностного слоя (х = 0) в предположении отсутствия структурного перехода (рис.2), имеют следующий вид:

по модели А

, ( > 0; (4)

по модели В

по модели С

Выражения (4) – (6) описывают термограмму на температурно-временных интервалах, соответствующих моделям плоского и сферического полупространств на стадиях нагрева и остывания изделия из ПМ вне области структурного превращения.

При нагреве и остывании системы структурные переходы в ПМ, сопровождающиеся тепловыми эффектами, проявляются на различных участках экспериментальных термограмм и могут быть выявлены по аномалиям на температурных зависимостях ТФС в соответствии с аналитическими закономерностями регулярных тепловых режимов применительно к моделям плоского (4) и сферического (5), (6) полупространств.

Рис. 5. Тепловая схема

системы с поверхностным

сферическим нагревателем

С целью разработки метода неразрушающего определения закона движения границы фазового перехода была рассмотрена задача о распространении тепла в сферическом пространстве (рис. 5).

Начальная температура тела из ПМ во всех точках одинакова и равна нулю. В момент времени ? = 0 на сферической поверхности с координатами r = R начинает действовать источник тепла с поверхностной мощностью q. При температуре T = Tп ПМ имеет фазовый переход, теплота которого – Qп. ТФС тела в результате ФП меняются незначительно. Необходимо найти распределение температуры внутри тела в любой момент времени. До тех пор, пока температура в любой точке тела меньше Tп, задача будет описываться классическим уравнением теплопроводности в сферических координатах с граничными условиями второго рода на поверхности с координатами r = R.

Решение задачи известно:

Температурное поле на момент времени ?нп , соответствующий началу ФП, определяется выражением:

Выражения (7), (8) в безразмерной форме:

В момент образования новой (первой) фазы начальное распределение температуры определяется зависимостью

а распределение температуры в теле находится из задачи стефановского типа:

– теплота ФП в безразмерном виде.

При условии, что поверхность с координатой r = R достигает Тп при больших

значениях Fo, начальное условие (14) в безразмерной форме:

Для определения закона движения границы ФП применены два варианта преобразований.

Решение уравнения (20) имеет вид:

Вариант 2. Закон движения границы ФП должен удовлетворять следующим

условиям.

Условие 1. В момент времени Fo = 0, координата границы перехода должна

. Условие 2 применимо для ФП, сопровождающегося поглощением тепла.

Условие 3. Значения координат границы перехода будут отставать от координат изотермы с соответствующей температурой в случае отсутствия ФП, если переход идет с поглощением тепла, и опережать, если он идет с выделением тепла.

Для получения закона движения границы ФП в качестве искомых были подобраны функции, удовлетворяющие условиям 1 и 2.

По варианту 1 на основании выражений (22) и (23):

, к > 0, m > 0. (24)

, к > 0, m > 0. (25)

По варианту 2:

, к > 0, m > 0. (26)

Подбор параметров к и m найденных функций осуществляется таким образом, чтобы удовлетворялось условие 3 при наилучшем приближении к данным, полученным в результате численного решения задачи (12) – (18) с учетом эквивалентности радиусов реального круглого плоского и модельного сферического источников тепла.

загрузка...