Delist.ru

Синтез, химические превращения биологически активных функционализованных (

Автор: Гончаров Владимир Ильич

Далее, мы распространили эту методологию для синтеза других 3-гетарилхининолинов. Мы показали, что с помощью этой методологии можно синтезировать 3-(2-пиридил)хинолины (56a-c), 3-(2-пиразинил) хинолин (57), 3-(2-бензимидазолил)хинолин (59) и 3-(2-бензимидазолил) хинолин (60). Используя продукт конденсации по двум метильным группам колидина (51) с выходом 42% был получен трис гетероцикл 58:

Таким образом, нам удалось разработать общий метод синтеза 3-гетарилхинолинов, основанный на комбинации реакций Робинсона и Вильсмайера.

Следующая часть нашей работы была посвящена исследованию возможности синтеза 1,2-дигидропроизводных 3-гетарилхинолинов из ?-гетарил-2-аминостиролов (46, 47). За основу была взята реакция конденсации ???-непредельных карбонильных соединений с альдегидами в присутствие DABCO (реакция Баилса-Хиллмана).

алось основание Шиффа. Затем смесь охлаждали, добавляли DABCO и оставляли на 20-30 дней. В результате реакции с умеренным выходом 22-54% были получены 1’,2’-дигидропроизводные 2,3’-бихинолина (62) и 3-(2-пиридил) хинолина (63):

62: Het=2-хинолил; 62a: R= Ph; b: R = 1-C10H7; c: R = Me; d: R=Pr; e: R=Bu;

63: Het=2-пиридил, R=Ph

Таким образом, впервые была показана возможность применения реакции Баилса-Хиллмана для синтеза гетероциклических соединений.

До начала наших работ методов, включающих образование в 2,3'-бихинолинах связи С4’-С4’a, не существовало. В этой части работы мы разработали ряд таких методов. Сначала мы перенесли на производные 2,3’-бихинолина предложенный сравнительно недавно способ формирования замещенного хинолинового ядра, основанный на формилировании ?-хлоренаминов. Этим способом удалось получить 2’-хлор-2,3’-бихинолин с выходом 62%:

Восстановлением 65 цинком в уксусной кислоте с выходом 84% был получен 2,3’-бихинолин (53a).

За основу следующего метода мы взяли формилирование и ацилилирование енаминов соединениями, родственными реагентам Вильсмайера. Для чего по стандартной методике, исходя из хинальдина и диметилацеталя ДМФА, были синтезированы диметиламиновинилхинолины 66

Мы показали, что вместо диметилацеталя ДМФА, который является классическим реагентом для подобных синтезов, можно использовать его синтетический предшественник – аддукт ДМФА с диметилсульфатом в присутствие триэтиламина. Выход в этом случае ~70%, т.е. практически не отличается от предыдущего. При этом сокращается стадия синтеза. Полученные таким образом соединения 66 без очистки были пущены в реакцию с о-аминобензальдегидом и солью изатиновой кислоты. Выход 2,3’-бихинолинов составил 63-78%:

53a: X=H; f: X=NO2; g: X=Br; 66a: X=H; b: X=NO2; c:X=Br;

67a: X=H; b: X=NO2; с: X = Br;

Таким образом, нам удалось модифицировать известный метод, заменив альдегид хинолин 2-уксусной кислоты на более доступные диметиламиностиролы 66.

Далее мы показали, что 3-гетарилхинолины 53, 56,57,72 могут быть получены взаимодействием амидов кислот с соединениями 66, 68-71 в присутствие POCl3 Этот метод имеет преимущество по сравнению с описанными выше, так как не требует наличия в кольце дополнительной формильной группы и позволяет получать 2’-замещенные 2,3’-бихинолины. Выход составил 27-61%. Аналогично можно получить другие гетарилхинолины:

53a: R = X = H; b: R = Me, X = H; c: R= Pr, X = H; d: R = Bu, X = H; e: R = Ph, X = H; h: X = Br; R = H; 56a: X=Y=R=H; b: X=H,Y=Br,R=H; c: X=H,Y=Me, R=H; 57,72: X=R=H

Метод можно использовать и для синтеза трис гетероциклических систем:

Вероятно, реакция протекает по следующей схеме, включающей на первой стадии образование имидоил хлоридов, которые присоединяются по кратной связи енамина. Образовавшиеся соли иминов 73 циклизуется, давая дигидрохинолины 74, которые, теряя диметиламин, образуют 3-гетарилхинолины:

Наиболее низкий выход продукта наблюдается в случае форманилидов, что, вероятно, связано с низкой стабильностью соответствующих имидоил хлоридов.

3,3'-Бихинолин (72) был получен встречным синтезом из 3- бромхинолина, для чего пришлось модифицировать известную методику. Мы показали, что вместо палладиевой черни можно использовать 10%-ный Pd/C. Последний можно регенерировать, используя систему гидразин/КОН. При этом выход практически не изменился и составил 48%.

Далее, мы выяснили, что катализатор можно регенерировать в ходе реакции, постепенно добавляя к реакционной смеси раствор щелочи в гидразин-гидрате. Это позволило использовать каталитические количества палладия и многократно использовать катализатор. Однако выход в этом случае уменьшается до 32%.

В следующей части нашей работы мы реализовали еще один вариант процедуры Вильсмайера для синтеза 3-гетарилхинолинов. Для этого по стандартной методике были синтезированы соли 75, 76. Далее, реакцией соли 75 с хлориминиевыми солями в пиридине получали 2,3’-бихинолины (53) и 3-(2-пиридил)хинолин (56a):

53a: R = H; i: R = Me; j: R = Ph;

Выход бихинолинов 53 составил 72-78%, пиридилхинолина 56a – 75%. Этот метод, в отличие от предыдущего, позволяет получить 4-замещенные 3-гетарилхинолины. Реакция, вероятно, протекает через следующую последовательность стадий (на примере 54a):

На первой стадии происходит депротонирование соли 76. Образовавшийся енамин 77 превращается в соль 78, которая циклизуется с образованием соли 79. Последняя теряет диметиламин, образуя соль 80, деметилирование которой пиридином приводит к 56a.

Далее мы распространили процедуру Вильсмайера на синтез 1,4-дигидропроизводных 3-гетарилхинолинов. В качестве модели нами были выбраны 1’,4’-дигидро-2,3’-бихинолины (82). Как следует из механизма на стр.27 реакция применима и для синтеза 82. В этой модификации в исходном соединении диметиламиногруппу соединения 66a заменили на H, Alk, Ar.

Нами установлено, что при кипячении 1 ммоль соединений 81, 1.1 ммоль форманилида или N-метилформанилида и 2 ммоль POCl3 в хлороформе в течение 2.5 ч и последующей обработкой водой и раствором аммиака образуются дигидропроизводные 82 с выходом 56-76%:

81a: R = H; b: R = Me; c: R = Ph; 82a: R = R’ = H; b: R = Me, R’ = H; c: R = Ph, R’ = H; d: R =H, R’ = Me; e: R = Me, R’ = Me; f: R = Ph, R’ = Me

Подобный подход был применен для синтеза полиядерных соединений – производных 1,3-диазапиренов (83). Выход составил 42-68%.

83a: R=H; b: R=Me; c: R=Ph

Завершая наши исследования применения процедуры Вильсмайера для синтеза 3-гетарилхинолинов, мы использовали ее для создания 2-замещенного хинолинового фрагмента. В качестве модели нами были выбраны 2,3’-бихинолины (53a,h). Задача представляет собой создание связей С2-С3 и С4-С4a. В качестве исходных были взяты анилиды хинолин-3-карбоновой и 6-бромхинолин-3-карбоновой кислот. Мы показали, что при последовательной реакции исходного анилида с SOCl2 в хлороформе, обработки реакционной смеси триэтиламином и далее кипячение с бутилвиниловым эфиром приводит к бихинолинам 53a,h с выходом 58 и 52% соответственно.

53a: R = Ph, X = H; h: X = Br; R = H;

Таким образом, на примере синтеза 3-гетарилхинолинов и их дигидропроизводных показаны синтетические возможности процедуры Вильсмайера для создания различных связей в различных хинолиновых ядерах бисгетероциклической системы (С1-С2 и С2-С3, С2-C3 и С4-С4а, С3-C4 и С4-С4а).

Ранее был разработан ряд методов синтеза 4'-хинолонов производных 2,3'-бихинолина – аналогов известных противомикробных препаратов. Одностадийных методов синтеза этих соединений, исходя из простых производных хинолина, известно не было. В этой части работы мы разработали такой метод синтеза, основанный на конденсации Клайзена.

Мы показали, что хинолоны 84 можно получить из хинальдина и метилового эфира N-алкил-N-формилантраниловой кислоты:

84a: R = Me; b: R = Et; c: R = Bu; d: CH2Ph

В случае алкильных заместителей на атоме азота выход практически не зависит от природы радикала и составляет 48-51%. В случае бензильного он значительно ниже 18%, что, вероятно, связано с побочным процессом дебензилирования.

Хинолоны 84 были получены и встречным синтезом через тионы 86, для чего был усовершенствован их синтез, используя следующую последовательность стадий: “защита” 1’-алкила в солях 85, путем их восстановления NaBH4 в дигидропроизводные 82 и далее, тиолирование последних элементной серой, как one pot-превращение:

84,86а: R = Me; b: R = Et; c: R = n-Bu; d: R = CH2Ph; e: R = i-C5H11

Последующее окисление тионов 86, например, элементным бромом приводит к хинолонам 84а-e с выходом, близким количественному.

загрузка...