Квантовые явления в динамике молекул и химических реакций (15.08.2007)
Автор: Волохов Вадим Маркович
0,30 0,92 0,06 0,70 0,42 0,46 В области энергий столкновения в окрестности первого порога (Е=0,2357 эВ) зависимость конечного колебательного числа от начального параметра становится чрезвычайно сложной, что приводит к значительному увеличению числа радужных каустик, которые к тому же формируются в непосредственной близости к барьеру. Здесь вычисление интеграла приводит к неверным результатам. При дальнейшем увеличении энергии число радужных траекторий уменьшается, картина каустик в окрестности барьера упрощается и становится возможным использовать представление (6) для вычисления вероятностей, располагая границу х не слишком далеко от барьера. Результаты расчета приведены в таблице. Исследуя изменение величины S00 при изменении х, можно судить о точности полученных результатов. Как показывают вычисления, при энергиях столкновения 0,25 эВ0,43 эВ в зависимости от положения границы значение интеграла (6) осциллирует в пределах ~30% около некоторого среднего значения вплоть до значений x<12а.е., а затем монотонно возрастает с увеличением х. В области энергий столкновения между вторым и третьим порогами, т. е. в области 0,32 эВ<0,43 эВ, когда все траектории приводят к реакции, монотонное увеличение S00 начинается при х>8 а.е. Это связано с тем, что в указанном диапазоне энергий всегда существует близко расположенная к барьеру радужная каустика, ответственная за перестройку либо на втором, либо на третьем порогах. Квазиклассическое описание молекулярных столкновений подразумевает использование классических траекторий, связывающих начальное и конечное состояния системы [8]. Задача о нахождении таких траекторий имеет несколько решений, что порождает проблему правил отбора, обсуждавшуюся в работах [9, 10] в связи с линейными адиабатическими реакциями обмена. Для неадиабатических переходов неединственность решения задачи о траекториях, заданных на двух концах, также известна (см., например, [4]), но отбор физических траекторий в этом случае очень сложен из-за необходимости вычислений в многомерном комплексном пространстве и никогда не проводился. Далее в первой главе рассмотрена одна из причин появления нефизических («лишних») траекторий для неадиабатических переходов в задаче о двух двумерных диабатических термах, имеющих вид плоскостей (диэдральное пересечение): в области перехода фиксируем фронтами лагранжевых многообразий: и выбором контуров интегрирования в выражении Е — энергия, m — масса изображающей точки. За каустиками (вне прямых углов (12)) волновые функции (10) экспоненциально убывают, внутри осциллируют. Предполагая использовать теорию возмущений по связи состояний 1 и 2, будем оценивать амплитуду неадиабатического перехода интегралом перекрывания Выполнив в этом выражении интегрирование по х, у и один раз по импульсам, найдем Диагонализуя показатель экспоненты окончательно получаем где С0 не зависит от энергии. Ф (z) — функция Эйри и введены следующие обозначения: Выражение (15) представляет самостоятельный интерес и может использоваться в ситуациях, требующих квантового рассмотрения неадиабатических переходов. Для установления связи с траекторными вычислениями исследуем модель сохраняя для простоты только экспоненту, найдем Попытаемся получить этот результат, используя квазиклассические представления с самого начала. Опуская формальные выкладки в квазиклассическом приближении получаем может оказаться (при |Х0|>У0) экспоненциально малым. Такой знак получился бы из формулы (9) при формальном использовании растущих решений в функции Эйри второго типа. Таким образом, можно сказать, что лишние связывающие траектории идут по нефизическим листам действия. Этот вывод аналогичен сделанному в работе [11] для адиабатических процессов и свидетельствует об очевидной некорректности использования траекторного приближения без анализа асимптотик волновых функций. Вторая глава посвящена исследованию туннельной динамики в потенциалах периодически зависящих от времени. В задачах, связанных с переносом протонов [12] или с распадом метастабильных состояний больших молекул [13], существенное значение имеет учет влияния периодического по времени возмущения на динамику исследуемого процесса. Таким образом, время жизни метастабильного состояния оказываются зависящими от параметров возмущения-частоты и амплитуды. В данном разделе построено решение нестационарного уравнения Шредингера с таким, периодически зависящим от времени потенциалом, который допускает постановку задачи о распаде метастабильного состояния. Разделение переменных в нестационарном уравнении Шредингера проведено с использованием того обстоятельства, что при упомянутом выше модельном потенциале нестационарное уравнение Шредингера допускает однопараметрическую группу Ли преобразований зависимой и независимой переменных [14,15]. Рассмотрим одномерное нестационарное уравнение Шредингера c потенциалом , (25) , (26) Сi (i=1,2,3,4), ( и ( - вещественные константы. При достаточно малом (, а также если С1 ( 0 , С 3 ( 0, С2=С4=0, потенциал V(x,t) осциллирует во времени и имеет вид ямы отделенной от свободного пространства барьером. С математической точки зрения потенциал V(x,t) (25-26) выделен тем, что соответствующий уравнению Шредингера оператор W [см.(24)] коммутирует с оператором первого порядка: , (27) Оператор S является оператором симметрии по отношению к W и решение уравнения (24) может быть найдено в форме общей собственной функции двух коммутирующих операторов S и W [16,17]. Оператору симметрии S соответствует инфинитезимальный оператор однопараметрической группы Ли точечных преобразований переменных: Используя метод характеристик, приходим к следующему решению: где g(z) - произвольная дифференцируемая функция. Далее, получаем , (32) - вещественные постоянные. играет роль энергии, квантуемой на квазидискретные уровни в кубическом потенциале . При небольших значениях параметра (, качественный вид потенциала V(x, t) такой: яма отделенная от свободного пространства барьером. Существование метастабильных состояний обеспечивается неравенствами (0(0 , (0(0 . Волновая функция ((x,t) отлична от нуля в потенциальной яме, затухает влево под бесконечный барьер и убывает до некоторой малой величины вправо при прохождении конечного потенциального барьера и представляется бегущей волной справа от конечного барьера. Пусть - их ширины: Время жизни метастабильного состояния определяется следующим соотношением: , (37) В соответствие с (35), время жизни ( является функцией параметров (0, (0, (0 и (. Вводя квазиэнергию, характеризующую систему в периодическом по времени потенциале[18 ]: (Eq -квазиэнергия, Т=2(/( - период осцилляций потенциала). Решение (31) показывает, что значения квазиэнергии комплексны и определяются выражением: Таким образом, проблема свелась к решению одномерного стационарного уравнения Шредингера (32) в классе функций g(z), которые соответствуют точкам квазидискретного спектра параметра (0. Используя далее квазиклассическое приближение, получаем для времени туннельного распада метастабильного состояния в потенциале периодически зависящем от времени |