Delist.ru

Оптическая спектроскопия сильнокоррелированных соединений: монооксид меди и манганиты лантана (15.08.2007)

Автор: Сухоруков Юрий Петрович

В оксиде меди обнаружен оптический отклик на магнитные фазовые переходы в температурной зависимости интенсивности полосы поглощения при 3.1 эВ. В легированных манганитах лантана вблизи температуры Кюри обнаружен оптический отклик на переход металл-изолятор в температурных зависимостях пропускания ИК-излучения.

Установлена природа зарядовых неоднородностей в CuO и манганитах. Разработан способ обнаружения разделения фаз в манганитах лантана на основе сопоставления температурных зависимостей пропускания света и электросопротивления без поля и в магнитных полях.

Обнаружены эффекты гигантского магнитопропускания ИК-излучения в манганитах с колоссальным магнитосопротивлением. Показано, что величина и температура максимума магнитопропускания зависят от уровня, типа легирования, от среднего радиуса катиона в лантановой подрешётке.

Обнаружены резонансоподобные полосы поглощения в CuO, не связанные с электронными переходами (резонансы Ми), а также осцилляции линейного дихроизма в плёнках La0.7Ca0.3MnO3, природа которых объяснена в рамках теории эффективной среды, учитывающей наномасштабные неоднородности.

Показано, что CuO и манганиты лантана являются функциональными материалами для создания ИК-устройств. Создан рабочий макета модулятора ИК-излучения на основе эффекта магнитопропускания.

Научная и практическая ценность

Работа вносит вклад в развитие физических представлений о взаимодействии оптического излучения с сильнокоррелированными магнетиками; о характере оптических переходов в системах с сильными электронными корреляциями – монооксиде меди и манганитах лантана. Способ сопоставления оптических и электрических данных для выявления зарядовых и магнитных неоднородностей может быть использован при исследовании других сильнокоррелированных соединений. Обнаруженные в манганитах с колоссальным магнитосопротивлением эффекты магнитопропускания и температурного изменения пропускания вблизи температуры Кюри являются физическим базисом для практического применения этих эффектов в различных устройствах ИК-диапазона. Разработан и изготовлен макет модулятора ИК-излучения на эффекте магнитопропускания в пленке La0.82Na0.18MnO3+(. Показана возможность создания магнитной линзы на основе гетероструктуры ВТСП/манганит лантана. Предложено использовать особенности спектров поглощения нанокристаллического CuO для создания селективных поглотителей солнечной энергии, а большую величину линейного дихроизма в CuO – для создания поляризаторов света в широкой ИК-области.

Достоверность полученных результатов

Достоверность обеспечивается использованием аттестованных образцов, обоснованностью используемых в работе экспериментальных методов изучения оптических и транспортных свойств манганитов и хорошей воспроизводимостью результатов, полученных на различных образцах (монокристаллах, поликристаллах и эпитаксиальных плёнках).

Научные положения, выносимые на защиту

Определение природы края фундаментального поглощения, межзонных переходов и примесного поглощения в CuO и манганитах лантана.

Выяснение роли облучения высокоэнергетическими частицами CuO и легирования манганитов лантана в формировании их оптических свойств.

Установление взаимосвязи между магнитной и электрической подсистемой CuO и манганитов при исследовании оптических свойств в области межзонных переходов и примесного поглощения.

Выяснение роли локализованных и делокализованных состояний в формировании ИК-спектров этих сильнокоррелированных соединений.

Изучение природы эффектов магнитопропускания и оптического отклика на МИ-переход в манганитах с колоссальным магнитосопротивлением.

Разработка физических принципов действия класса ИК-устройств, управляемых магнитным полем и/или температурой. Создание макета ИК-модулятора.

Личный вклад соискателя

Результаты, изложенные в диссертации, получены автором в кооперации с сотрудниками лаборатории магнитных полупроводников ИФМ УрО РАН, сотрудниками ведущих научных центров России (ИФМ УрО РАН, ИХТТ УрО РАН, МГУ, УрГУ) и Украины (ФТИНТ). Личный вклад автора включает выбор темы исследования, постановку цели и задач диссертационной работы, формирование комплекса методик исследований, обеспечивающих решение поставленных задач, разработку и усовершенствование установок для оптических исследований сильнопоглощающих материалов, проведение оптических, магнитооптических и электрических измерений, анализ полученных результатов, обобщение результатов работы в публикациях и отчетах по проектам и создание рабочих макетов оптоэлектронных устройств ИК-диапазона.

Апробация работы

Основные результаты работы были доложены и обсуждены на Европейской конференции по магнетизму ЕММА (Сарагоса 1998, Киев 2000), Международной конференции по тройным и многокомпонентным соединениям (Салфорд 1997), Международной конференции по магнетизму IТCM (Варшава 1994), Международном симпозиуме по прозрачным проводящим оксидам (Ираклион, Крит 2006), Московском Международном симпозиуме по магнетизму MISM (Москва 1999, 2002, 2005), Международном Евро-Азиатском симпозиуме EASTMAG (Екатеринбург 2001, Красноярск 2004), Международной конференции «Функциональные материалы» ICMF (Симферополь 2003, 2005), Международной школе-семинаре «Новые магнитные материалы микроэлектроники» (Москва 1994, 1996, 1998, 2000, 2002, 2004, 2006), Международном семинаре по радиационной физике (Снежинск 1999), Международной конференции «Физика электронных материалов» (Калуга 2002), Международной конференции «ВТСП и новые неорганические материалы инженерии» (Москва 2004), Международном Феофиловском симпозиуме по кристаллам, активированным редкой землей или ионами переходных металлов (Екатеринбург 2004), Международной конференции «Забабахинские научные чтения» (Снежинск 2005), Всероссийской научно-практической конференции «Оксиды. Физикохимические свойства и технология» (Екатеринбург 1995, 1998, 2000), Конференции по физике взаимодействия заряженных частиц с кристаллами (Москва 1997), Уральской школе-семинаре по физике полупроводников (Екатеринбург 1999, 2004), Объединенной конференции по магнитоэлектронике (Екатеринбург 2000), Уральской конференции «Достижения в области магниторезисторных материалов» (Екатеринбург 2001), совещании по физике низких температур НТ (Екатеринбург 2003), отчетных сессиях ИФТТ РАН по итогам выполнения фундаментальных исследований ОФН РАН (Черноголовка 2004, 2005, 2006), на сессиях секции «Магнетизм» объединенного научного совета «Физика конденсированных сред» РАН.

Публикации

Результаты диссертации изложены в 54 публикациях в журналах, включённых ВАК в «Перечень» ведущих рецензируемых журналов, и в сборниках трудов конференций. Список основных публикаций приведен в конце автореферата.

Структура диссертации

Диссертационная работа состоит из введения, шести разделов, заключения и списка цитируемой литературы. Объем работы составляет 291 страницу, включая 109 иллюстраций, 7 таблиц и список цитируемой литературы из 243 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснованы актуальность темы и выбор объектов исследования, сформулированы цели и задачи, а также основные положения, составляющие научную новизну и практическую значимость диссертации.

1. Методики исследований и образцы

Первый раздел носит методический характер. В нём описаны методики исследования оптических свойств сильнопоглощающих твердых тел в широком температурном интервале и во внешних полях, дано обоснование выбора объектов исследования, описаны методы получения образцов. В табл. 1 перечислены составы, технологии получения, где и кем получены образцы.

Таблица 1

Состав Метод получения Авторы

CuO, монокристаллы Из раствора

в расплаве, а также газовый транспорт Наумов С.В.,

Чеботаев Н.М., Костромитина Н.В.

ИФМ УрО РАН

CuO, нанокристаллические порошки Конденсация паров Cu в среде Ar+O Ермаков А.Е.,

Уймин М.А.,

ИФМ УрО РАН

CuO, высокоплотная нанокерамика Метод ударных

сходящихся

сферических волн Козлов Е.А.

загрузка...