Delist.ru

Оптическая спектроскопия сильнокоррелированных соединений: монооксид меди и манганиты лантана (15.08.2007)

Автор: Сухоруков Юрий Петрович

СУХОРУКОВ Юрий Петрович

ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ СИЛЬНОКОРРЕЛИРОВАННЫХ СОЕДИНЕНИЙ: МОНООКСИД МЕДИ И МАНГАНИТЫ ЛАНТАНА

01.04.11 – физика магнитных явлений

Автореферат

диссертации на соискание ученой степени

доктора физико-математических наук 

Екатеринбург - 2007

Работа выполнена в Ордена Трудового Красного Знамени

Институте физики металлов Уральского отделения Российской академии наук

Научный консультант

доктор физико-математических наук Лошкарёва Наталья Николаевна

Официальные оппоненты:

доктор физико-математических наук, профессор Филиппов Борис Николаевич,

доктор физико-математических наук, профессор Эдельман Ирина Самсоновна,

доктор физико-математических наук Фишман Анатолий Яковлевич

Ведущая организация

Уральский государственный университет им. А.М. Горького, г. Екатеринбург

Защита состоится 26 октября 2007 г. в 11:00 на заседании диссертационного совета по защите диссертаций Д 004.003.01 при Институте физики металлов УрО РАН по адресу: 620041, Екатеринбург, ул. С. Ковалевской, 18

С диссертацией можно ознакомиться в библиотеке Института физики металлов УрО РАН.

Автореферат разослан « » 2007г.

Ученый секретарь

диссертационного совета

доктор физико-математических наук Лошкарева Н.Н.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Работа направлена на решение фундаментальной проблемы физики магнитных явлений и физики конденсированного состояния – изучение электронной структуры и взаимосвязи электронной и магнитной подсистем в сильнокоррелированных соединениях (СКС) монооксиде меди и манганитах. К сильнокоррелированным системам относятся соединения переходных металлов с сильным кулоновским отталкиванием между 3d электронами. СКС обладают тесной взаимосвязью зарядовых, спиновых и решёточных степеней свободы, а также богатством фазовых диаграмм. Особенности свойств сильнокоррелированных соединений во многом связаны с двойственной природой электронных состояний (локализованные и делокализованные) [1] и с тенденцией к зарядовому и магнитному разделению фаз [2, 3]. К сильнокоррелированным соединениям относятся оксиды 3d металлов, в том числе оксиды меди, обладающие высокотемпературной сверхпроводимостью (ВТСП), манганиты R1-xАxMnO3, где R – редкоземельный ион, А – Ag, Na, Sr, Ba, Ca и др., обладающие колоссальным магнитосопротивлением.

Уже в пионерской работе по поглощению света в монокристалле высокотемпературного сверхпроводника YBa2Cu3O7-(, проведенной при участии автора диссертации, в полупроводниковой фазе были обнаружены вклады в поглощение локализованных электронных состояний поляронного типа и делокализованных состояний (Друде-вклад). В отличие от YBa2Cu3O7-( в антиферромагнитном (АФМ) полупроводнике CuO, базовом материале купратных ВТСП соединений, делокализованные носители отсутствуют. Наличие электронной неустойчивости, которая проявляется в магнитной восприимчивости и магнитострикции CuO, позволило сделать предположение о том, что электронное состояние в CuO неоднородно. Изучение неоднородного электронного состояния сильнокоррелированного соединения CuO и связи его с магнитным состоянием является актуальной задачей физики сильнокоррелированных соединений.

В отличие от CuO манганиты лантана легируются легко, поэтому при отклонении от стехиометрии или легировании концентрация носителей меняется в широких пределах, что позволяет изучить поведение локализованных и делокализованных состояний и связь их с магнитной подсистемой в моно-, поликристаллах и плёнках. Большой интерес к манганитам лантана обусловлен колоссальным магнитосопротивлением и переходом металл-изолятор (МИ) вблизи температуры Кюри. Явление колоссального магнитосопротивления обусловлено сильной взаимосвязью между магнитной и электронной подсистемами. Оно может проявляться не только на постоянном токе, но и давать отклик в высокочастотном, например, в оптическом диапазоне как эффект магнитопропускания. Эффект гигантского магнитопропускания ИК-излучения был обнаружен нами в магнитной полупроводниковой шпинели HgCr2Se4 около 20 лет назад [4]. Под действием магнитного поля пропускание менялось на несколько десятков процентов. Естественно ожидать большой величины эффекта магнитопропускания в манганитах с колоссальным магнитосопротивлением. Изучение природы явлений колоссального магнитосопротивления и магнитопропускания в манганитах позволит создать новые функциональные материалы, необходимые для практических целей. На основании большого числа экспериментальных данных во всех обзорах по манганитам отмечена их склонность к разделению фаз, т. е. образованию при слабом легировании манганита ферромагнитных (ФМ) металлических «капель» в АФМ диэлектрической матрице. Надежные экспериментальные данные, свидетельствующие о разделении фаз, могут быть получены только при комплексном исследовании оптических, электрических, магнитооптических и магнитотранспортных свойств манганитов.

При теоретическом описании электронной структуры сильнокоррелированных соединений существуют определенные трудности. Зонные подходы в целом дают описание электронной структуры и величину ширины запрещенной зоны (Еg) купратов и манганитов, но не могут объяснить детали оптических спектров в ИК-диапазоне. Эти подходы не учитывают фазовое расслоение в легированных соединениях. Применение кластерного подхода к купратам и манганитам позволило описать особенности энергетического спектра [5], показать возможность расслоения фаз, приводящего к нетривиальному поведению оптических, магнитных и транспортных свойств.

В настоящей работе основными методами изучения электронной структуры, локализованных и делокализованных состояний, разделения фаз в сильнокоррелированных соединениях являются оптические методы. Для сильнопоглощающих объектов, какими являются сильнокоррелированные соединения, обычно используют изучение спектров отражения или высокочастотной проводимости, полученных путем обработки спектров отражения методом Крамерса-Кронига. Этот метод имеет ряд недостатков, связанных с приближениями при математической обработке и зависимостью от качества поверхности образца. В настоящей работе использовано преимущественно измерение оптического поглощения – метода изучения объёмных свойств материала.

Исследования по теме диссертации выполнены по пробле-ме 1.2.3 (физика конденсированного состояния) № гос. рег. 01.9.60 003496, по теме «Исследование физических явлений в магнитных полупроводниках и выяснение возможности их применения», № гос. рег. 01.2.00 103137, по теме «Неоднородные состояния и интерфейсные явления в магнитных полупроводниках», по гос. контракту № 02.513.11.3142 и при поддержке проектов РФФИ № 04-02-16630, 07-02-00068 и программы ОФН РАН и Президиума УрО РАН «Новые материалы и структуры».

Цель и задачи работы

Цель работы заключается в установлении связи оптических и электрических явлений с электронной структурой и магнитным упорядочением в CuO и манганитах лантана, являющихся системами с сильными электронными корреляциями; в определении природы изменения оптических свойств сильнокоррелированных соединений под действием магнитных полей, температуры, радиационного облучения и легирования; в выработке рекомендаций для целенаправленного создания новых функциональных материалов и физических принципов устройств для оптоэлектроники.

Сформулированы следующие задачи:

Комплексное исследование оптических, магнитооптических, транспортных и магнитотранспортных свойств монокристаллов, поликристаллов, плёнок и гетероструктур сильнокоррелированных соединений на основе монооксида меди и манганитов лантана для изучения природы эффекта магнитопропускания (магнитопоглощения), эффекта Фарадея и оптического отклика на переход металл-изолятор в манганитах лантана.

Выяснение электронной структуры и роли переходов с переносом заряда в формировании края фундаментального поглощения и структуры фундаментальной полосы в CuO и манганитах лантана. Изучение влияния магнитного упорядочения на оптические и электрические свойства CuO и манганитов лантана.

Выяснение природы примесного поглощения, механизмов взаимодействия света с носителями заряда и проявления зарядовых и магнитных неоднородностей в ИК спектрах сильнокоррелированных соединений.

Разработка физических принципов действия и конструкций ИК устройств, использующих особенности спектра поглощения в нанокристаллическом CuO, эффекты гигантского магнитопропускания и оптического отклика на переход металл-изолятор в манганитах лантана. Создание макета модулятора ИК-излу-чения.

Научная новизна

Обнаружены особенности в спектрах поглощения сильнокоррелированных соединений монокристаллов CuO и манганитов лантана, которые объяснены в рамках единого подхода – кластерной модели, учитывающей сильные электронные корреляции. По спектрам поглощения монокристаллических образцов определены энергия края фундаментального поглощения и характер переходов, формирующих край поглощения CuO и манганита LaMnO3.

загрузка...