Delist.ru

Метод мониторинга ионосферы Земли на основе использования навигационных спутниковых систем (15.08.2007)

Автор: Смирнов Владимир Михайлович

СМИРНОВ Владимир Михайлович

Метод мониторинга ионосферы Земли

на основе использования навигационных

спутниковых систем

01.04.03. – Радиофизика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Москва 2007

Работа выполнена в Институте радиотехники и электроники РАН

Официальные оппоненты: Пермяков Валерий Александрович,

доктор физико-математических наук,

профессор

Ружин Юрий Яковлевич,

доктор физико-математических наук

Боярчук Кирилл Александрович,

доктор физико-математических наук

Ведущая организация: Государственное учреждение Научный центр аэрокосмического мониторинга «Аэрокосмос» (ЦПАМ «Аэрокосмос») Министерства образования и науки Российской Федерации и Российской академии наук

Защита состоится 2 ноября 2007 года в 10-00 на заседании диссертационного совета_Д 002.231.02 при Институте радиотехники и электроники РАН по адресу: 125009, Москва, ГСП-9, ул. Моховая, д.11, корп.7.

С диссертацией можно ознакомиться в библиотеке ИРЭ РАН.

Автореферат разослан «____» сентября 2007 г.

Ученый секретарь

диссертационного совета

доктор физико-математических наук А.А.Потапов

Введение

Исследование физической природы, морфологии и динамических характеристик неоднородностей электронной концентрации является одной из ключевых задач физики ионосферы. Изучение особенностей распространения радиоволн в ионосфере и разработка новых методов её зондирования являются важными задачами радиофизики, которые входят в Перечень приоритетных направлений фундаментальных исследований РАН по направлениям «Физика ионосферной и межпланетной плазмы» и «Фундаментальные проблемы распространения радиоволн».

Исследование структуры ионосферы важно как для понимания физики протекающих в ней процессов, так и для решения разнообразных радиофизических задач, связанных с распространением радиоволн. Необходимость изучения ионосферы связана с эффективностью функционирования спутниковых систем радиосвязи и координатно-временного обеспечения и с тенденцией разработки радаров с синтезированной апертурой, использующих всё более низкие частоты радиоволн и способных осуществлять глубинное зондирование земных грунтов [1-4].

Важной проблемой является мониторинг состояния ионосферы над потенциально сейсмоопасными районами, поскольку установлено, что на стадии формирования сейсмического процесса ионосфера над эпицентром испытывает различные возмущения, связанные с процессом прохождения землетрясений [5-8]. Научный интерес к исследованию естественных и антропогенных процессов, происходящих в природной среде, обусловлен также тем, что их можно трактовать как активные эксперименты в ионосфере Земли и использовать возникающие при этом эффекты для решения целого ряда задач физики ионосферы, ионосферного распространения радиоволн, физики атмосферных волн и т.д.

В настоящее время для определения характеристик различных объектов используются радиофизические методы, основанные на решении обратных задач математической физики [9]. Методология исследований, базирующаяся на решении обратных задач, является одним из новых направлений в изучении процессов, происходящих в ионосфере Земли [10-11]. Преимущество методов, использующих теорию решения обратных задач распространения радиоволн в неоднородной атмосфере, заключается в том, что они позволяют проводить экспериментальные исследования непосредственно при эксплуатации существующих спутниковых систем ГЛОНАСС и GPS, предназначенных для решения других задач. Этот подход является новой эрой в ионосферных исследованиях, поскольку основное свойство этих систем - возможность проводить измерения непрерывно во времени в любой точке Земли - непосредственно переносится на ионосферный мониторинг и позволяет обеспечить исследование глобальных и региональных явлений в ионосфере.

Выполненные в рамках данной работы исследования соответствуют специальности 01.04.03 «Радиофизика», раздел 5 «Разработка научных основ и принципов активной и пассивной дистанционной диагностики окружающей среды, основанных на современных методах решения обратных задач. Создание систем дистанционного мониторинга гео-, гидросферы, ионосферы, магнитосферы и атмосферы. Радиоастрономические исследования ближнего и дальнего космического пространства».

Основные сведения об ионосфере получают в настоящее время от установок, расположенных на Земле. Однако они в состоянии дать информацию лишь о параметрах ионосферы ниже максимума слоя F2. Что касается верхней ионосферы, то соответствующая информация о высотном распределении электронной концентрации ранее могла быть получена только с помощью ионозондов космического базирования, вертикальных запусков ракет и немногочисленных установок некогерентного рассеяния радиоволн, позволяющих определять параметры ионосферной плазмы в широком диапазоне высот 70 –1500 км. Однако эти средства достаточно дороги. В связи с этим особую остроту приобретает технология определения параметров ионосферы на основе анализа свойств сигналов, излученных искусственными спутниками Земли.

Существующие методы определения параметров ионосферы по данным спутниковых измерений дают возможность контролировать в основном интегральное содержание электронного распределения ионосферы Земли. Метод определения параметров земной ионосферы, основанный на использовании классической схемы радиопросвечивания спутник-спутник, позволяет определять высотное распределение электронной концентрации ионосферы Земли, но требует наличия одновременно двух спутников. Обеспечивая глобальность наблюдения за состоянием нижней части ионосферы Земли, данный метод не обладает высоким пространственным разрешением вдоль траектории полета.

Практическое использование радиотомографических методов, позволяющих восстанавливать двумерную зависимость высотного распределения электронной концентрации по измерениям в специально расположенных пунктах, является весьма сложной технической и вычислительной задачей.

Предложенный в диссертационной работе метод радиопросвечивания на трассе спутник-наземный пункт позволяет получать высотный профиль распределения электронной концентрации ионосферы Земли в подорбитальном пространстве космического аппарата для различных гелио- и геофизических условий в любое время суток и для любых регионов земной поверхности, включая горы и морские акватории, северный и южный полюса.

Целью настоящей диссертационной работы является развитие теории и разработка технологии непрерывного мониторинга, предназначенных для исследования ионосферы и решения задач оперативного контроля высотного распределения и полной электронной концентрации ионосферы Земли методом радиопросвечивания на трассе спутник - Земля с использованием радиосигналов навигационных спутниковых систем в реальном масштабе времени.

Реализация поставленной цели достигается на основе решения следующих задач:

? обоснование необходимости применения навигационных спутниковых систем для обеспечения глобального и непрерывного мониторинга высотного распределения электронной концентрации ионосферы методом радиопросвечивания на трасе спутник-Земля в реальном масштабе времени;

? разработка алгоритмов и программных средств, предназначенных для решения обратной задачи радиопросвечивания на трассе спутник-Земля с целью определения высотного распределения электронной концентрации ионосферы Земли;

? исследование влияния дополнительной априорной информации и погрешностей измерений дальности и приведенной разности фаз на определение высотного профиля электронной концентрации;

? разработка алгоритмов реконструкции пространственно-временных распределений электронной концентрации ионосферы Земли по результатам спутникового мониторинга в однопозиционной схеме наблюдений;

загрузка...