Delist.ru

Теория двумерных и наноразмерных систем с сильными корреляциями в модели Хаббарда (15.08.2007)

Автор: Миронов Геннадий Иванович

- понять особенности свойств наносистем, которые можно описывать в рамках модели Хаббарда;

- вычислить энергетический спектр и энергию основного состояния фуллерена С60 и структурных элементов фуллерена, таких как пентагон и гексагон, понять, как спектр элементарных возбуждений влияет на свойства наносистем.

Для достижения поставленной цели необходимо решить следующие задачи:

- разработать методику решения операторных уравнений, описывающих эволюцию квантовой системы, описываемой гамильтонианом Хаббарда, в рамках "приближения статических флуктуаций";

- произвести вычисление фурье-образа антикоммутаторной функции Грина, полюса которой определяют энергетический спектр исследуемой модели;

- получить выражения для корреляционных функций (термодинамических средних), описывающих свойства модели Хаббарда;

- получить в приближении статических флуктуаций замкнутую систему операторных уравнений, описывающих поведение наносистемы в рамках модели Хаббарда, решить эту систему уравнений;

- сравнить полученные решения с точными решениями модели Хаббарда.

Методы проведенного исследования:

Круг вопросов, обсуждающихся в диссертационной работе, касается исследования свойств бипартитной двухмерной модели Хаббарда и свойств различных наносистем в рамках модели Хаббарда. Выше мы отметили, что существует множество методик решения модели Хаббарда, они рассмотрены в первой главы настоящей работы.

Одной из основных задач современной физики конденсированных сред является вычисление корреляционных функций изучаемых систем, поскольку они содержат в себе всю фактическую информацию о свойствах исследуемых систем. Поэтому разработка аналитических методов вычисления корреляционных функций, а также функций Грина представляет собой актуальную задачу теоретической физики.

В настоящее время существует несколько способов вычисления корреляционных функций и термодинамических характеристик одномерных и двухмерных моделей, среди которых можно выделить методы разного рода расцеплений, например, Хаббард [2] применил технику расцепления двухвременных функций Грина [6], метод трансфер-матриц [7], диаграммные методы [3], методы теорий возмущения [8], а также методы, основанные на уравнениях движения [9].

Метод уравнения движения при всех своих преимуществах [9], обладает принципиальным недостатком – в его рамках нет систематического способа расцепления (обрыва) обычно бесконечной цепи уравнений движения для функций Грина, и, следовательно, нет внутреннего способа оценки точности выполняемого расцепления.

в представлении Гейзенберга по аналогии с [11] разбивается на две части [10]:

объявляется независящим от времени, причем

квадрат оператора флуктуации заменяется на среднее значение (С – число), что и позволяет замкнуть систему уравнений движения [10].

Разработанная в диссертационной работе методика является развитием метода статического флуктуационного приближения применительно к модели Хаббарда. Исходя из внутренних свойств модели Хаббарда, удалось:

- совершив некоторое каноническое преобразование избавиться от зависимости оператора флуктуации от времени, так что без всякого приближения оператор флуктуации становится статическим, что позволило решить искомые системы уравнений для операторов;

- обосновать, используя оператор флуктуации числа частиц, возможность замены квадрата оператора флуктуации числа частиц на среднее значение этого оператора,

- показать, взяв оператор флуктуации проекции спина на ось OZ, что квадрат оператора флуктуации выражается в модели Хаббарда через с-число и оператор флуктуации проекции спина в первой степени, что позволяет получить точные уравнения движения для операторов вторичного квантования в замкнутом виде.

Таким образом, в отличие от обычных схем расцепления в диссертационной работе предлагается схема, позволяющая получить замкнутые уравнения движения для операторов в представлении Гейзенберга либо в рамках контролируемых приближений, либо в точном виде.

Научная новизна:

Разработана методика решения двухмерной бипартитной модели Хаббарда в рамках приближения статических флуктуаций. В приближении статических флуктуаций было получено решение для оператора рождения частиц в представлении Гейзенберга, в котором заключена вся информация о физических свойствах модели Хаббарда в рамках выбранного приближения.

В приближении статических флуктуаций были вычислены и исследованы одночастичные функции Грина, которые свидетельствуют о том, что линейная цепочка атомов в модели Хаббарда описывается в рамках латтинжеровской жидкости, что согласуется с точным решением [4], тогда как двухмерная модель Хаббарда в случае сильных корреляций вблизи границы зоны Бриллюэна приобретает черты нефермижидкостной системы, но не может быть сведена к латтинжеровской жидкости, а в случае слабых корреляций описывается в рамках нормальной ферми-жидкости.

В рамках выбранного приближения был вычислен и исследован энергетический спектр двухмерной бипартитной модели Хаббарда, показано, что в режиме сильных корреляций энергетический спектр имеет вид, характерный для случая антиферромагнитного упорядочения в системе. Полученные энергетические спектры позволяют естественным образом объяснить переход металл-диэлектрик при изменении параметров системы (изменения концентрации электронов, соотношения между интегралом переноса и кулоновским интегралом).

энергии основного состояния в приближении статических флуктуаций и в случае точного решения [4] совпадают, в области промежуточных значений U имеется хорошее согласие с точным решением одномерной модели Хаббарда [4].

С использованием разработанной методики вычисления функций Грина была вычислена магнитная восприимчивость двумерной двухподрешеточной модели Хаббарда. Сравнение полученных результатов, с точным решением одномерной модели Хаббарда в магнитном поле [12] выявило, что в частном случае одномерной модели Хаббарда в присутствии магнитного поля приближение статических флуктуаций и точное решение показывают почти совпадающие как качественно, так и количественно (с точностью до постоянного множителя) результаты.

В приближении статических флуктуаций вычислены и исследованы характеристики наносистем, показано, что модель Хаббарда можно использовать при исследовании наносистем.

Актуальность темы:

, вследствие чего немедленно были предприняты многочисленные попытки привлечь для их описания модель Хаббарда. Учитывая важную роль электронных состояний CuO2-слоев и квазидвухмерный характер электронного спектра, следовало обратить особое внимание на свойства двухмерной модели Хаббарда. Статистическая механика модели Хаббарда в двух измерениях представляет очень сложную и мало исследованную задачу. Кроме того, в последнее время активно развиваются атомная инженерия, нанотехнология, что приводит к необходимости теоретического исследования свойств различных наноструктур, исследование наноструктур составляет важный раздел как физики твердого тела, так и материаловедения. Поэтому тема диссертационной работы является весьма актуальной.

Практическая и научная ценность:

, о чем свидетельствует исследование нормального состояния купратов [8].

Приближение статических флуктуаций позволяет исследовать свойства наносистем в рамках модели Хаббарда. Эти исследования показывают, что наносистемы обладают особенностями, которые не характерны для массивных образцов. В частности, эти особенности касаются спектра элементарных возбуждений и свойств, связанных со спектром, а также значений магнитных моментов атомов наносистем. Эксперименты показали, что величина проекции спина (магнитного момента) атома зависит от количества атомов в наносистеме: чем больше число атомов в нанокластере, тем магнитный момент атома по величине меньше [13]. Исследование поведения нанокластеров с учетом влияния атомов подложки на свойства атомов наносистемы позволяет объяснить наблюдаемое явление уменьшения величины магнитного момента (спина) при увеличении числа узлов в наносистеме. Из результатов вычислений следует, что возможно «управление» значением проекции спина исследуемого атома путем изменения температуры, потенциала кулоновского поля.

Основные положения, выносимые на защиту:

1. Разработка метода решения модели Хаббарда в приближении статических флуктуаций, реализация этого метода при исследовании двухмерной бипартитной модели Хаббарда и наносистем.

2. Результаты вычисления энергетического спектра двухмерной бипартитной модели Хаббарда и различных наносистем, вычисления и исследования одночастичных функций Грина в рамках приближения статических флуктуаций.

3. Результаты по вычислению энергии основного состояния двухмерной двухподрешеточной модели Хаббарда, а также наносистем в модели Хаббарда в приближении статических флуктуаций, исследования влияния интегралов переноса на второй по близости узел кристаллической решетки на поведение энергии основного состояния.

4. Результаты по вычислению и исследованию магнитной восприимчивости двухмерной бипартитной модели Хаббарда, учитывающей восприимчивости спиновых подсистем и переносы намагниченности от одной спиновой подсистемы к другой.

5. Результаты вычисления магнитного момента (спина) атомов наносистем.

Достоверность результатов обеспечивается надежностью используемых методов расчета, результаты вычислений сравниваются с известными точными решениями. Например, вычисление энергии основного состояния одномерной модели Хаббарда в приближении статических флуктуаций показало, что приближенное решение и точное решение [4] в режимах сильной связи и слабой связи практически совпадают, в области промежуточной связи энергия основного состояния при приближенном решении оказывается выше энергии основного состояния в случае точного решения на несколько процентов. Вычисление статической восприимчивости одномерной модели Хаббарда показало, что приближенное и точное решения совпадают как качественно, так и количественно (с точностью до постоянного множителя). Точное и приближенное решения димера показали, что одночастичные функции Грина в случае точного решения и решения в приближении статических флуктуаций совпадают. Выражения для функций Грина в случае точного решения и решения в приближении статических флуктуаций совпали и при учете кулоновского отталкивания электронов, находящихся на соседних узлах наносистемы.

загрузка...