Delist.ru

Закономерности изменения теплофизических свойств флюидосодержащих коллекторов при изменении температуры и порового давления (15.08.2007)

Автор: Курбанов Абдулгаджи Ахмедович

В Северном Дагестане, где глубина скважины не меньше 4-5 км, прогнозирование температур начинается с глубины 6 км. Прогнозирование проведено по наиболее характерному значению теплового потока. Максимальное число скважин имеет плотность теплового потока 0,106 Вт/м2. Такой подход к прогнозированию температур Северного Дагестана определяется особенностями, выявленными ранее выполненным прогнозом температур Южного Дагестана, и глубиной скважин в этом районе. Разность прогнозируемых температур на глубине 10 км составляет 28 градусов. По сравнению с Южным Дагестаном, где разность на этой глубине составляет 86 градусов, такую величину, видимо, можно объяснить ожидаемым здесь изменением глубин карбонатного фундамента. Дальнейшее прогнозирование проводилось с учетом характера изменения геотермического градиента по глубине. Такое прогнозирование наиболее близко к ожидаемым величинам. При этом для Северного и Южного Дагестана не наблюдается аномального распределение отличного от ожидаемых по результатам доступных измерению.

Из отмеченного выше можно сделать вывод о том, что при отсутствии данных о тепловом потоке с достаточной для общих построений точностью могут быть использованы прогнозные температуры на глубине 10 и более км, определенные по глубинному распределению градиентов.

Глава 5. ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ ТЕПЛОФИЗИЧЕСКИХ  ИССЛЕДОВАНИЙ ГОРНЫХ ПОРОД ДЛЯ РАЗРАБОТКИ МЕТОДИЧЕСКИХ ОСНОВ И РЕШЕНИЯ

ГЕОЛОГО - ГЕОФИЗИЧЕСКИХ, ГЕОТЕРМИЧЕСКИХ ЗАДАЧ

Пятая глава посвящена применению результатов теплофизических исследований горных пород для решения геолого-геофизических и геотермических задач.

В параграфе один главы рассматривается методика, предназначенная для поиска и разведки залежей флюидных полезных ископаемых, может быть применена для повышений эффективности разработки нефтегазовых и геотермальных месторождений.

Известная методика поиска и разведки залежей флюидных полезных ископаемых, использующей геотермические параметры, которые характеризуют возможность его осуществления (Соколов Б. Л. и др., 1974 г.) не рассматривает возможность поиска геотермальных месторождений и не позволяет достоверно выявить полезный объем на глубинах не достигнутых бурением.

Цель методики - повышение эффективности поиска и разведки залежей флюидных полезных ископаемых и достоверности выявления полезного объема этих залежей.

Сущность предлагаемой методики заключается в следующем: в начале применяя известный ранее "Способ определения коэффициента ? веществ" (авт. св, СССР, № 760774, 1980 г.,) получают экспериментальные данные теплопроводности газо-нефте- и водонасыщенных образцов горных пород (гл.3). Затем, используя полученные экспериментальные данные, определяют ? для различных по составу литологических комплексов в условиях глубинного залегания пластов, соответствующие конкретной глубине в скважине и выявляют ее изменчивость по горизонтам на различных глубинах путем нанесения их на геологическую карту региона. Такими условиями приняты усредненные значения распределения температур и давлений с глубиной в скважинах. В характере изменений ? водо-нефте- и газонасыщенных горных пород наблюдается тенденция ее уменьшения с ростом глубины, такое уменьшение является результатом преобладающего влияния температуры, Однако, степень этого уменьшения зависит как от насыщенного флюида, так и от литологического состава.

В параграфе два главы рассматривается влияние динамики температурного режима на тепловые параметры и на пористость коллекторов пласта при закачке отработанного теплоносителя в зону теплоотбора. Не учет смещения тепловых и емкостных характеристик пласта, вследствие изменения температурного режима в забойной зоне приводит к значительным неточностям в расчете исходных проектных данных геотермальной циркуляционной системы (ГЦС) при разработке геотермальных месторождений.

В параграфе три главы, рассматривается определение расстояния между подъемными и нагнетательными скважинами ГЦС, а также определение давления и сроков разработки циркуляционных систем. Приведены оценки влияния изменения тепловых и емкостных характеристик пласта на эксплуатационные параметры ГЦС некоторых месторождений, что позволяет повысить точность этих параметров, а именно:

а) изменяет расстояние между разноименными скважинами, оцененных на основе табличных данных на 200-250 м, что эквивалентно уменьшению давления нагнетания в среднем на 20-25%;

б) приводит к заметному уменьшению срока эксплуатации терригенных коллекторов до момента начала охлаждения.

Проектные данные разработки геотермальных месторождений целесообразно проводить на основе достоверных фактических данных, полученных лабораторными и промысловыми исследованиями, для каждого месторождения с учетом их изменений в зависимости от температурного режима в зоне отбора тепла.

ЗАКЛЮЧЕНИЕ

Впервые поставлены и решены ряд задач, связанных с малоизученной проблемой экспериментального исследования теплофизических свойств литологических образований, в том числе вместилищ для жидких и газообразных полезных ископаемых при термодинамических условиях, максимально приближенных к естественным.

   1. На основе анализа современного состояния теплофизических исследований горных пород показана необходимость создания конструктивно-методических основ изучения тепловых свойств флюидосодержащих горных пород (кернового материала) в условиях, моделирующих совместное влияние поровых давлений и температур с целью существенного повышения надежности и точности полученной информации. Идеальное повторение природной обстановки на образце, естественно, невозможно, поэтому изучение теплофизических свойств в большом диапазоне различающихся факторов и при их различных сочетания помогает выбрать наиболее приемлемые результаты для конкретного объекта.

2. Создана и конструктивно модифицирована оригинальная установка, для измерения теплопроводности флюидосодержащих горных пород на базе компенсационного метода плоского слоя, позволяющая моделировать естественные термодинамические условия и повышающая надежность и точность измерений изучаемого параметра (А. с. № 779870).

3. Усовершенствована методика по определению ? веществ в термодинамических условиях эксперимента, позволяющая повысить точность ее измерений (А. с. № 760774, ДСП).

4. Впервые проведено экспериментальное изучение теплопроводности образцов кернового материала, относящихся к разным литологическим типам на значительном экспериментальном материале с различными коллекторскими свойствами, видом насыщающего флюида и установили степень изменения этого параметра. Результаты исследования ? представлены для широкого спектра пород на нефтяных, газовых, геотермальных и других месторождений в зависимости от характера коллектора и насыщающего флюида, а также от термобарических условий, что позволяет использовать для решения разнообразных региональных геолого-геофизических и геотермических задач:

а) от характера коллектора и вида насыщающего флюида

- теплопроводность для водонасыщенных карбонатных пород изменяется до 90-160%, за исключением одного образца с аномальными значениями до 300%, для терригенных 100-170%, для нефтенасыщенных карбонатных пород 30-140%, для терригенных 50-90%;

б) от термобарических условий

- установлены явления аномального изменения теплопроводности водонасыщенных карбонатных пород (при 293-573К и 0,1-110 МПа), обусловленные эндотермическими реакциями с переходом одной структурной модификации породы в другую.

При повышении температуры от 293 до 573К в интервале давлений от 0,1 до 150 MПla ? флюидонасыщенных карбонатных пород уменьшается (для газонасыщенных на 35-55%, для водонасыщенных на 45-85%, для нефтенасыщенных на 25-60% , для терригенных газонасыщенных на 20-55%, водонасыщенных на 15- 60%, для нефтенасыщенных на 15-60%).

При воздействии давления до 150 МПа в исследованном интервале температур ? газонасыщенных карбонатных пород увеличивается на 20-30%, водонасыщенных - на 15-20%, нефтенасыщенных - на 10-25%; для газонасыщенных терригенных увеличивается на 10-40%, водонасыщенных - на 10-25% , нефтенасыщенных - на 25-35%.

5. Экспериментально зафиксированы и сфотографированы полиморфные превращения некоторых водонасыщенных карбонатных пород в исследованном интервале температур. Отмечены аномальные явления теплопроводности этих пород, которые подтверждены Международной Ассоциацией научных открытий как научное открытие.

6. Автором вычислены поинтервальные термобарические коэффициенты теплопроводности исследованных горных пород в диапазоне температур (293 –573К) и давлений (0,1-150 МПа) с дальнейшей практической рекомендацией. Разработана важная для геолого-геофизических и геотермических исследований методика оценки ? горных пород в условиях, совместного влияния изменения температур и поровых давлений, применяя термобарические коэффициенты теплопроводности полученных по экспериментальным результатам исследованных типов керновых материалов, которые могли бы служить основой для корректного расчетного определения теплопроводности.

7. Выбраны методы, созданы и отлажены экспериментальные установки, получены данные температуропроводности, теплоемкости род в интервале температур (298-673К). Определены плотность и пористость исследованных пород.

8. Новые данные ? горных пород, полученные экспериментально, позволили оценить ? для различных по составу литологических комплексов в условиях глубинного залегания; оценить глубинные температуры и тепловые потоки Северного и Южного Дагестана; построить модели распределения геотермических характеристик по глубинным разрезам месторождений региона; рассчитать проектные параметры рациональных схем ГЦС в задачах отбора глубинного тепла (определение расстояние между подъемными и нагнетательными скважинами, определение сроков службы ГЦС и др.

9. Решение задач стало возможным благодаря известным достижениям наук о Земле, в частности, конструктивно-методических основ и результатов с высокой надежностью и точностью экспериментальных данных, полученных с помощью аппаратуры, проверенной на эталонных образцах, их адекватностью по известным критериям оценки изучаемых процессов, использованием известных положений фундаментальных наук, и корректностью разработанных методик, позволяющих проводить самоконтроль измеряемых значений тепловых характеристик в процессе эксперимента, а также сходимостью полученных результатов с результатами исследований других авторов; - изучением различных типов горных пород, гарантирующего обоснованность выводов, касающихся средних значений и характерных особенностей поведения теплофизических параметров; - проведением петрографического анализа на шлифах образцов до и после исследования.

10. Полученные результаты позволяют повысить эффективность решения геолого-геофизических задач как фундаментального, так и прикладного аспекта. Уточнение значений теплопроводности, приближенных к их состоянию в природной ситуации имеет большое значение для правильной оценки глубинных температур и глубинного теплового потока. Они позволяют более обоснованно подходить к постановке терморазведочных работ в изучаемом регионе. Более того, повысить качество интерпретации данных этих работ при решении важных хозяйственных задач, связанных с поиском, разведкой и разработкой месторождений полезных ископаемых (нефтегазовых и гидротермальных); с расчетом режимов глубокого и сверхглубокого бурения скважин; с использованием геотермального тепла.

Полученные результаты оказались полезными и были использованы в ниже приведенных решениях:

-показано, что ? влагонасыщенных литологических комплексов как функция от давления и температуры, соответствующих глубинным условиям на уровне около 10 км, характеризуется небольшим диапазоном изменения величины (от 2,3 до 2,7 Вт/(м.К).

- показано, что для получения прогнозных значений глубинных температур кроме учета вертикальной зональности плотности теплового потока необходимо использование зависимостей ? как функция от Р, Т.

- разработана методика, повышающая эффективность поиска и разведки залежей флюидных полезных ископаемых и достоверности влияния полезного объема этих залежей. (Патент № 2П7318).

-оценено влияние динамики температурного режима на тепловые и емкостные параметры коллекторов пласта и влияние изменения этих характеристик на эксплуатационные параметры ГЦС, что позволяет повысить их точность.

Результаты внедрены на ведущих предприятиях:

1. В «НПЦ Подземгидроминерал» расчетах геотермальных циркуляционных систем и проектировании систем теплоснабжения (в задачах извлечения теплового потенциала Мостовского, Каясулинского и др. геотермальных месторождений).

2. В институте геологии Даг.ФАН СССР при проведении исследований по пpогнозу нефтегазоносности глубинных зон Восточною Предкавказья и шельфа Каспийского моря.

загрузка...