Delist.ru

Научно-практические основы интродукции и эффективного возделывания сои в нечерноземной зоне Российской Федерации (15.08.2007)

Автор: Кобозева Тамара Петровна

1. Формирование репродуктивных органов в среднем

на 1 продуктивное растение сои в зависимости от дозы гамма-облучения семян

(в среднем по сортам Северная 5 и Приморская 494),

на примере полевого опыта, 1983 г.

Доза, Гр* Число цветков, шт. Завязыва-емость.

бобов, % Количество бобов Число семян,

шт. Число семян в 1 продукт. бобе, шт. Масса семян,

г Масса 1000 семян, г

всего,

*Мощность дозы – 0,9 Гр/мин.

Облучение семян гамма-лучами в дозе до 50 Гр не вызывало видимых изменений. В диапазоне доз от 50 до 200 Гр наблюдалось отрицательное действие радиации, которое проявлялось в замедлении и подавлении процессов прорастания, роста и развития. При этом особенно заметным отставание в росте было до фазы 3…4 тройчатого листа, наблюдалось снижение высоты растений за счет сокращения числа междоузлий и уменьшения их длины. Действие радиации проявлялось тем сильнее, чем выше была доза облучения и хуже складывались условия для прорастания и роста.

Полную гибель растений у разных сортов вызывало облучение в дозе от 150 до 400 Гр в зависимости от ряда причин, что опровергает мнение о величине летальной дозы для сои 200 Гр. По нашим данным этот показатель зависит от условий возделывания культуры, физиологического состояния семян и проростков. Выявлено, что при мощности излучения 0,4 Гр/мин. семена и выросшие из них растения страдали от облучения сильнее, чем при 1,02 Гр/мин.

Эта закономерность сохранялась и в М2.. Для диапазона доз от 50 до 200 Гр существует диапазон мощностей, при котором повреждающий эффект при каждой конкретной дозе зависит от соотношения мощности лучевого потока и продолжительности воздействия. При этом продолжительное воздействие при малой мощности сильнее повреждает живой объект, чем более мощное, но кратковременное облучение. Об этом свидетельствуют и количество хромосомных аберраций в клетках корешков проростков, причем механизм реабилитации клеточных структур при кратковременном, но интенсивном воздействии работает лучше, чем при продолжительном, но слабом. Когда же лучевой поток настолько велик, что «отключает» механизм реабилитации, вызывая глубокие, необратимые изменения в клетке, соотношение факторов интенсивности и времени уже не имеет значения. В работе дается объяснение этого явления с точки зрения возможности взаимодействия антиоксидантов с активными радикалами, образующимися при разрушении клеточных структур под действием стресс-фактора, в том числе гамма-облучения.

Повреждение хромосомного аппарата, разрушение целостности клеточных структур и вследствие этого нарушение всех биохимических процессов в клетках зародыша семени приводят к появлению химерных растений. Если при малых дозах до 50 Гр наличие видимых изменений носило случайный характер, то по мере повышения дозы облучения отмечалось закономерное увеличение их числа и расширение спектра, а в вариантах при дозах 120 Гр и более все растения были видоизменены и имели от 3 до 6 типов нарушений.

В М2 наблюдалось четко выраженное последействие радиации, что проявлялось в снижении полевой всхожести, выживаемости растений, продолжительности вегетации, продуктивности растений и было выражено тем сильнее, чем выше была доза облучения в Мо и чем хуже складывались условия для прорастания семян и развития растений. Поскольку в М2 полной реабилитации растений от радиационного повреждения не происходило, то для избежания потерь ценных мутантов отбор из мутантных популяций следует проводить в более поздних поколениях.

Выявлены сортовые различия по радиочувствительности семян. Наиболее заметно по этому показателю различались сорта Северная 5 и Приморская 494, причем радиочувствительность семян Северной 5 оказалась выше. Между сортами Аврора, Восток и Приморская 494 существенных различий по радиочувствительности не обнаружено.

Установлено, что диапазон доз, приемлемый для облучения растений в фазу начала цветения, составляет 10…20 Гр. По мере увеличения дозы снижается высота растений, уменьшается число узлов, сокращается длина междоузлий, уменьшается высота крепления первого нижнего боба, бобы закладываются в пазухах примордиальных листьев (в отдельных случаях – в пазухах семядолей), при этом уменьшаются число бобов на растении, число и масса семян, а также ухудшаются посевные свойства последних. Выросшие из таких семян растения уступают контрольным (без облучения) по высоте и продуктивности, среди них возрастает доля стерильных и увеличивается изреживаемость.

Установлено, что при выборе дозы важно учитывать мощность лучевого потока и продолжительность облучения. У обоих сортов выявлен эффект мощности дозы: мощное, но менее продолжительное облучение меньше травмировало растение и вызывало снижение семенной продуктивности в меньшей степени, чем более продолжительное но меньшей мощности.

В мутантных популяциях, полученных от облучения семян и вегетирующих растений сои сортов Северная 5 и Приморская 494, было выделено 30 типов мутаций, причем значительное количество последних присутствовало у обоих сортов при облучении как семян, так и вегетирующих растений.

Облучение семян оказалось более эффективным и технологичным, однако различия в спектре мутаций свидетельствуют о необходимости применения разных способов получения новых признаков у растений сои.

Сорт Северная 5 превосходил Приморскую 494 по мутабильности, как по числу и доле мутаций в мутантной популяции, так и по спектру наблюдавшихся изменений. В диапазоне доз от 40 до 100 Гр и от 10 до 20 Гр при облучении соответственно воздушно-сухих семян и вегетирующих растений (в фазу бутонизации-начала цветения) получен максимальныхй выход мутантов с наибольшим количеством полезных мутаций.

В целом можно сделать заключение о том, что радиационный мутагенез перспективен для получения форм, превосходящих родительские сорта по скороспелости, продуктивности и другим хозяйственно-ценным признакам (табл. 2).

2. Характеристика мутантных форм сои северного экотипа по основным морфологическим и хозяйственно-ценным признакам, полевой опыт,

в среднем за 1985…1989 гг.

Сорт, образец

Облучение,

Гр/Гр/мин. Группа спелости, балл

Высота растений, см

Высота прикрепления

нижнего боба, см

Тип роста**

Содержание белка, %

Содержание жира, %

Средняя урожайность, т/га

Швед. 856 0/0,0 000 58 5 д 35,8 18,3 1,48

М-10 40/0,4 000 40 12 д 34,6 18,4 1,60

М-17 40/0,4 000 46 9 д 35,6 19,3 1,80

М-52 30/0,4 00 80 11 п/д 38,9 18,8 2,44

НСР05 - - 5,1 2,9 - - - 0,11

Северная 5 0/0,0 00 79 13 п/д 38,5 18,6 1,52

загрузка...