Delist.ru

Физико-химические процессы в плазме наносекундных СВЧ разрядов (15.08.2007)

Автор: Иванов Олег Андреевич

Эксперименты, моделирующие процесс очистки атмосферы с помощью наносекундного СВЧ разряда, проводились в смеси воздуха с фреоном (CFC-113). В качестве источника электромагнитного излучения использовался карсинотрон 8-миллиметрового диапазона длин. Удельный энерговклад, в зависимости от давления воздуха, составлял 10-3-10-1 эВ/молекула. Электронная концентрация в распадающейся плазме измерялась резонаторным методом. В параграфе приводятся результаты измерения скорости распада плазмы при различном содержании фреона в воздухе, рис.13. Снижение доли фреона приводило к сближению скоростей распада плазмы в воздухе и смеси воздуха с фреоном, а при парциальных давлениях ниже рf* = 3·10-5 Тор влияния фреона на распад плазмы не наблюдалось. Величина порогового давления определялась равенством частот прилипания электронов к молекулам фреона и кислорода. Продемонстрирована возможность разрушения фреонов при их низком содержании, но в этом случае обнаруженный в эксперименте быстрый распад плазмы (гл.2) повышает энергозатраты на удаление одной молекулы фреона в несколько раз. На основании экспериментально установленной скорости распада плазмы определена эффективность разрушения фреона с помощью наносекундного разряда в тропосфере на высотах 15-30 км.

Рис.12. Зависимость энергоцены разрушения молекулы CFC от процентного содержания фреона при 80% очистке (р=100 Тор): 1 - CFC-113 наш эксперимент, 2 - CFC-12, 3 - CFC-114, 4 - CFC-113 (СВЧ разряды микросекундной длительности). Рис.13. Изменение скорости распада плазмы в смеси воздуха с CFC-113 при общем давлении р=10 Тор и различных парциальных давлениях фреона: 1 - рf=0, 2 -рf=3.6?10-4 Тор, 3 -рf=9?10-3 Тор.

Анализ эффективности различных каналов разрушения фреона в зависимости от длительности наносекундного импульса и содержания фреона в газовой смеси представлен в п.5.2. Показано, что при высоком содержании фреона и использовании импульсов большой длительности, основными каналами являются разрушение CFC при соударении с образующимися в разряде возбужденными частицами и атомами, а также диссоциация фреона электронным ударом. В импульсах очень короткой длительности и при низком содержании примеси фреона преобладают процессы разрушения, связанные с диссоциативным прилипанием электронов и перезарядкой отрицательных ионов. К некоторому увеличению эффективности разрушения CFC в процессах диссоциативного прилипания может приводить каталитический цикл, связанный с отлипанием электронов от ионов хлора [Александров Н.Л.]. Приводятся оценки концентрации фреона и длительности СВЧ импульса, необходимые для преобладания того или иного канала.

В п.5.3. представлены результаты эксперимента по исследованию генерации озона в газовой смеси, содержащей примесь СFC-113. Данные эксперимента позволили установить роль атомов O(3P) в процессах разрушения фреонов и провести оценку константы этого процесса.

В параграфе п.5.4. рассмотрены динамика и процессы трансформации продуктов разрушения фреона. В разряде образуются значительные концентрации возбужденных молекул, радикалов и атомов, приводящие через цепь реакций к формированию большого числа разнообразных окислов и появлению каналов разрушения CFC, не связанных с электронным компонентом. В случае создания СВЧ разряда в атмосфере на низких высотах эти продукты будут частично вымываться на Землю дождями, частично же попадать в верхние слои атмосферы, взаимодействуя с ее малыми составляющими. Данное обстоятельство делает анализ продуктов плазмохимических превращений чрезвычайно важным. Анализ образующихся в разрядной плазме продуктов плазмохимических реакций проводился методами абсорбционной УФ и ИК спектроскопии. Представлены результаты измерений динамики окислов азота и хлора в импульсно-периодическом разряде. Обнаружено, что при низком содержании CFC конкуренция азотного и хлорного циклов приводят к падению эффективности гибели озона. Установлено, что при длительной обработке газовой смеси, основными продуктами разложения фреона являются молекулы хлора, концентрация которых хорошо коррелирует с результатами измерений убыли фреона в ИК диапазоне. При этом концентрации окислов хлора и азота оказываются на несколько порядков величины ниже, чем концентрация молекул Cl2.

В п.5.4.2. приводятся результаты численного моделирования процесса разрушения CFC-113 в импульсно-периодическом разряде и проводится сравнение с данными эксперимента. При расчетах использовалась упрощенная двухточечная модель, учитывающая плазмохимические процессы непосредственно в разряде и в реакторе (некоторой точке вне разряда), куда продукты химических реакций выносятся диффузией. Безусловно, данная модель является весьма грубой, но в то же время она позволяет качественно описать основные тенденции плазмохимических процессов, протекающих в сильно неоднородной плазме наносекундного коронного разряда.

Результаты экспериментального исследования эволюции радикалов фреона в наносекундных СВЧ и коронном разрядах, полученные на основе анализа ИК спектров поглощения, представлены в п.5.4.3. В экспериментах газовая смесь обрабатывалась СВЧ импульсами с параметрами: длина волны ?= 8 мм, длительность ? = 5 нс, мощность P=10-15 МВт, частота повторения импульсов F=1-4 Гц. Приводятся результаты измерения концентраций идентифицированных химических соединений, образующихся после обработки смеси, содержащей CFC-113, серией импульсов СВЧ и коронного разрядов.

В параграфе п.5.5. рассматриваются конкретные процессы, приводящие к разрушению фреонов, а также эволюция и трансформация радикалов, образующихся в процессе обработки газовой смеси. Анализ проведенных экспериментов показал, что существенную роль в деструкции фреонов при низких энерговкладах играют процессы диссоциации с участием заряженных частиц (диссоциативные ионизация, прилипание, перезарядка ионов и прямая диссоциация электронным ударом), а также реакции с атомами кислорода. При этом разрушение фреонов в наносекундных разрядах, в отличие от разрядов большей длительности, происходит преимущественно в областях, занятых плазмой. Установлено, что в процессе обработки смеси, содержащей фреон, происходит последовательное разрушение образующихся на предыдущей стадии хлорфторуглеродов, а преобладающими продуктами на конечной стадии процесса являются молекулы Cl2 и SiF4. Последние образуются в результате взаимодействия фторсодержащих радикалов с кварцевыми стенками реактора. Показано, что на начальной стадии обработки происходит, в основном, разрушение C-Cl и С-С связей в молекулах CFC, а лишь затем разрушаются более прочные C-F связи в обогащенных фтором продуктах реакций. Установлено, что механизмы деструкции фреона в наносекундном коронном и СВЧ разрядах имеют одинаковую природу, определяемую высокой долей энергии электронов, идущей на ионизацию и диссоциацию молекул при высоких значениях параметра E/N в этих разрядах.

Шестая глава посвящена разработке и исследованию мощных источников излучения (СВЧ компрессоров) для создания наносекундных СВЧ разрядов. Отметим, что большинство приложений низкотемпературной плазмы предполагает либо непрерывное поддержание разряда, либо использование импульсно-периодического режима с достаточно высокой средней мощностью. В случае наносекундного СВЧ разряда это приводит к необходимости использования источников излучения, способных работать с высокой частотой следования импульсов. Релятивистские СВЧ генераторы позволяют получать наносекундные импульсы мощностью до нескольких гигаватт, но являются сложными и дорогостоящими устройствами, не всегда удовлетворяющими этому требованию. Поэтому более перспективным для технологических процессов представляется использование СВЧ источников на основе временной компрессии импульсов.

В п.6.1. излагаются физические принципы, определяющие работу активных компрессоров микроволнового излучения. Метод компрессии СВЧ импульсов основан на накоплении электромагнитной энергии в высокодобротном резонаторе с последующим быстром выводом ее к нагрузке (модуляцией добротности). Одним из ключевых элементов активного компрессора является коммутатор (переключатель), обеспечивающий вывод энергии из накопительного резонатора. Для получения мощных сжатых импульсов с высокой эффективностью компрессии наиболее привлекательным представляется использование сверхразмерных резонаторов, работающих на модах типа TEon, с низкими омическими потерями. В параграфе приводится краткий обзор существующих компрессоров с такими резонаторами. Анализируется возможность использования в коротковолновой части СВЧ диапазона компрессоров с брэгговскими рефлекторами.

Параграф п.6.2. посвящен разработке новых конструкций плазменных переключателей для СВЧ компрессоров со сверхразмерными резонаторами. Показано, что в наибольшей степени требованиям, предъявляемым к переключателям таких компрессоров, отвечают управляемые брэгговские рефлекторы и переключатели, обладающие резонансными свойствами. Рассмотрена серия плазменных переключателей, использующих различные электродинамические принципы. В п.6.2.1. описан плазменный переключатель на основе управляемого брэгговского рефлектора. Исследования показали, что для коммутации такого рефлектора распределенным набором газоразрядных трубок необходимо, чтобы плазма, возникающая при пробое газа, имела высокую концентрацию и однородность. Эти требования можно существенно ослабить, если электродинамическая структура выходного рефлектора обладает резонансными свойствами и, соответственно, для нарушения резонанса достаточно лишь небольшого изменения параметров среды, заполняющей газоразрядные трубки. Этот метод был реализован в осесимметричном СВЧ компрессоре, работающем на моде H01 круглого волновода и использующем управляемый выходной рефлектор в виде скачкообразного расширения волновода (п.6.2.2.) или резонансный плазменный переключатель (п.6.2.3.). Представлены результаты расчетов и экспериментальной проверки указанных переключателей и детально описаны принципы их работы.

Перевод компрессора из режима накопления энергии в режим вывода осуществляется путем быстрого образования плазмы в расположенных в переключателе газоразрядных трубках. Для обеспечения эффективного вывода энергии из резонатора коммутатор должен иметь малое время образования плазмы (~10-8 c) с концентрацией превышающей критическую. Например, для СВЧ излучения 3-см диапазона электронная концентрация в трубках должна превышать величину Ne > 2?1012 см-3. Поэтому при разработке коммутатора необходимо знать динамику пробоя газа и параметры плазмы в длинных трубках, которые, в свою очередь, зависят от плотности газа и приложенного напряжения. Важную роль при этом играет конструкция источника импульсов высокого напряжения, используемого для создания плазмы.

В п.6.3. рассмотрены конструкция малогабаритного генератора высоковольтных импульсов и особенности наносекундного пробоя в газоразрядных трубках, применяемых в плазменных переключателях. Приводятся результаты экспериментального исследования высокоскоростных волн ионизации в длинных трубках, определены скорость распространения фронта ионизации и концентрация электронов в разряде. Показано, что выбором соответствующих параметров (давления и рода газа, диаметра газоразрядных трубок, амплитуды высоковольтного импульса) можно обеспечить время создания и плотность плазмы, необходимые для эффективного вывода СВЧ энергии из накопительного резонатора.

В 6.4. представлены результаты экспериментальных исследований одноканального компрессора СВЧ импульсов на основе сверхразмерного брэгговского резонатора, возбуждаемого на моде Н01 круглого волновода и использующего разработанные плазменные переключатели. Определены коэффициенты усиления по мощности и эффективность компрессии в зависимости от длительности импульса накачки, давления и состава газа в газоразрядных трубках переключателя. В режиме самопробоя газа в выходном рефлекторе достигнут высокий ~25 МВт уровень мощности в сжатом импульсе длительностью 40-50 нс. В режиме внешнего запуска получены сжатые импульсы с мощностью 11 МВт и длительностью импульса 50 нс при коэффициенте усиления по мощности равном 9.

Рис.14. Осциллограммы входного Pinc и сжатого импульсов Pcom, полученные для двухканального компрессора с объединенным вводом-выводом энергии: р = 0,4 Toр, Pinc = 5,1 MВт, Pcom = 53 МВт, длительность сжатого импульса 43 нс, эффективность компрессии 56 %;

В п.6.5. представлены результаты исследования 100-мегаваттного активного двухканального компрессора СВЧ импульсов проходного и отражательного типа 3-х сантиметрового диапазона длин волн, возбуждаемого c использованием мощного СВЧ генератора – магникона, разработанного фирмой "Omega-P” совместно с NRL (США). В этом компрессоре использовались разработанные плазменные переключатели. Каналы компрессоров соединялись с СВЧ генератором и нагрузкой через 3 dB квазиоптический направленный ответвитель с повышенной электропрочностью. Использование ответвителя позволило исключить влияние отраженного сигнала на режим генерации магникона и увеличить эффективность накопления энергии в компрессоре по сравнению с одноканальной схемой. На высоком (~ 5 MВт) уровне падающей мощности продемонстрирована возможность когерентного сложения импульсов, сжатых в каждом из каналов компрессора. В 3-х сантиметровом диапазоне длин волн достигнуты рекордные по энергетике и эффективности параметры сжатых импульсов. Так, в режиме внешнего запуска получены сжатые импульсы с мощностью 53 МВт и длительностью 43 нс, рис.14. Коэффициент усиления по мощности при этом превышал 10, а эффективность компрессии достигала 56 %.

В заключении сформулированы основные результаты, полученные в диссертационной работе.

Основные результаты диссертационной работы

Исследован пробой газа СВЧ импульсами большой интенсивности и малой длительности. Измерена частота ионизации в различных газах в широкой области давлений и значений приведенного электрического поля, а также в сверхсильном поле при низких давлениях, когда осцилляторная энергия электронов превышает потенциал ионизации атомов и молекул. Установлено насыщение зависимости частоты ионизации от амплитуды СВЧ поля в области параметра E/?=5?10-7-2?10-6 В/см с и существование нижней границы порога пробоя по давлению, не зависящего от амплитуды поля и связанного с высокой поступательной скоростью электронов и действием пондеромоторной силы. Измерения энергетического спектра электронов в разлетающейся разрядной плазме подтвердили наличие электронов с высокой (до 3,5 кэВ) энергией при пробое газа в сверхсильном СВЧ поле. Показано, что в сверхсильном СВЧ поле константы большинства элементарных процессов падают с увеличением осцилляторной энергии электронов значительно медленнее, чем в постоянном электрическом поле той же амплитуды и чем изменяется сечение соответствующего процесса.

Установлено, что высокие значения напряженности электромагнитного поля в наносекундном импульсе изменяют пространственно- временную картину развития разряда в волновом пучке. Высокая скорость ионизации и малая длительность импульса, приводят к формированию дискретной структуры разряда при высоких давлениях, связанной с пробоем на отдельных затравочных электронах. В сильных полях на кинематику волны пробоя начинает оказывать влияние конечное время распространения излучения вдоль оси волнового пучка, приводящее к смещению области первоначального пробоя из фокальной плоскости в направлении падающего излучения. Показано, что различный характер зависимости сечений ионизации и возбуждения электронных уровней молекул от энергии электронов приводит к несовпадению пространственных распределений светимости и концентрации электронов и задержке оптического излучения относительно СВЧ импульса.

Установлено, что значительная энергия электронов, сохраняющаяся в распадающейся плазме из-за высокой степени ионизации и возбуждения газа приводит к изменению характера деионизации плазмы в различных газах. Так в азоте и кислороде наблюдается медленный рекомбинационный распад, а в воздухе обнаружен быстрый распад плазмы, характерный для диссоциативного прилипания электронов. Показано, что наряду с процессами прилипания и отлипания электронов существенное влияние на распад плазмы оказывают процессы ионной конверсии. Высокая энергия электронов связана с передачей электронам энергии при столкновении с метастабильными молекулами азота (удары 2-го рода). Обнаружено, что после пробоя газа низкого давления в сверхсильных полях в разрядной плазме остаются электроны с энергией превышающий потенциал ионизации. В процессе релаксации энергии электронов их концентрация продолжает возрастать в течение времени (0,5-1 мкс) после окончания СВЧ импульса и достигает величин, в 5-10 раз превышающих критическую для падающего излучения.

2 Дж/атм.л. Установлено, что при возбуждении лазерной смеси с помощью сходящейся цилиндрической TE-волны в газоразрядных трубках большого диаметра происходит последовательная генерация лазерного излучения слоями плазмы расположенными на различных расстояниях от его оси. Такая динамика приводит к удлинению лазерного импульса и увеличению мощности генерации. Получена лазерная генерация в воздухе в свободно локализованном разряде (без трубки), в режиме усиления спонтанного излучения и продемонстрирована возможность создания атмосферного лазера с дистанционной СВЧ накачкой на переходах 2+ - системы азота. Построена численная модель азотного лазера, возбуждаемого наносекундным СВЧ разрядом в поле цилиндрической ТЕ-волны. Установлено, что подбором давления лазерной смеси, диаметра газоразрядной трубки и величины падающей СВЧ мощности можно эффективно управлять параметрами разряда, добиваясь почти полного поглощения СВЧ излучения и высокой эффективности лазерной генерации. Показаны перспективы использования свободно локализованного наносекундного СВЧ разряда в атмосфере Земли в качестве азотного лазера с дистанционной накачкой, референтного источника света (радиозвезды) для настройки наземных оптических телескопов и для диагностики малых составляющих атмосферы.

Изучены механизмы формирования в наносекундном СВЧ разряде атмосферного давления тонких плазменных нитей с повышенной яркостью. Показано, что причиной возникновения интенсивно излучающих нитей является ионизационно-перегревная неустойчивость. К развитию указанной неустойчивости может приводить быстрый нагрев газа при тушении электронных уровней молекул, эффективно возбуждающихся в разрядной плазме. Установлено, что образование плазменной нити сопровождается ростом параметра E/N и концентрации электронов. При этом резко возрастает эффективность возбуждения электронных уровней молекул и мощность спонтанного излучения, а также создаются условия для возникновения инверсной населенности и режима усиления УФ излучения вдоль плазменной нити.

Показано, что динамика озона в наносекундном разряде в кислороде существенным образом зависит от длительности, частоты повторения и энергии СВЧ импульсов. Определены оптимальные условия по приведенному электрическому полю (E/N~10-15 В·см2), при которых на диссоциацию кислорода в разряде идет максимальная из возможной доля энергии СВЧ импульса. Минимальная цена ~ 4 эВ получена для в разряде, создаваемом короткими (~5 нс) импульсами с низкой частотой повторения. Показано, что величина квазистационарной концентрации озона в импульсно-периодическом разряде в кислороде в значительной мере определяется колебательным возбуждением молекул озона, сильно ускоряющем реакцию его гибели и диффузией, влияющей на баланс колебательной энергии.

Проведено экспериментальное исследование процесса синтез озона в наносекундном разряде в воздухе и азотно-кислородных смесях. Показано, что в свободно локализованном СВЧ разряде, когда продукты плазмохимических реакций быстро покидают разрядную область возможна эффективная генерация озона в коротких (~5-10 нc) наносекундных импульсах. Установлено, что увеличение длительности и частоты повторения импульсов приводит к разрушению образованного на начальной стадии озона в результате накопления в разрядной области окислов азота. Образование окислов связано с ростом поступательной и колебательной температур азота при увеличении энерговклада в разряд. Показано, что достижение высокой концентрации озона при минимальном количестве окислов азота при комнатной температуре возможно только при небольшом числе СВЧ импульсов в серии или низкой частоте повторения импульсов, а также при прокачке газа через область разряда. Понижение температуры газа приводит к росту эффективности генерации озона и снижению наработки окислов азота. В широком диапазоне экспериментальных условий (давления газа, мощности и длительности СВЧ импульсов, длины электромагнитной волны) определена энергоцена образования одной молекулы озона. Установлено, что эффективность диссоциации кислорода существенным образом зависит от электродинамической структуры разряда. На основании численного моделирования динамики наносекундного СВЧ разряда в широком диапазоне параметров определена эффективность диссоциации кислорода.

Проведен цикл исследований, посвященных разработке активного метода воздействия на стратосферу пучками мощных микроволн. На основании результатов модельных экспериментов и численных расчетов установлено, что при создании в атмосфере Земли с помощью наносекундного СВЧ-разряда в пересекающихся волновых пучках искусственной ионизованной области (ИИО) в зависимости от выбранного режима могут нарабатываться различные малые составляющие, представляющие интерес для изучения их динамики в условиях реальной атмосферы. Показано, что эффективная генерации озона в ИИО может быть осуществлена на высоте 20-25 км излучением 3-см диапазона длин волн с напряженностью электрического поля в области пересечения пучков 4-6 кВ/см СВЧ-импульсами длительностью 30-50 нс. В этом случае СВЧ энергия эффективно поглощается в разрядной плазме, и имеются значения удельных энерговкладов, при которых соотношение концентраций озона и окислов азота близко к их естественному отношению в атмосфере, а энергоцена образования одной молекулы озона составляет величину ~ 30 эВ. Оптимальным режимом воздействия на атмосферу является небольшая серия наносекундных импульсов при смене местоположения ИИО путем сканирования волновыми пучками в максимуме естественного озонного слоя.

Экспериментально исследован процесс очистки атмосферы от фреонов (CFC) в разрядах наносекундной длительности. Установлено, что механизмы деструкции фреонов в наносекундном коронном и СВЧ разрядах имеют одинаковую природу, определяемую значительной долей энергии электронов идущей на ионизацию и диссоциацию молекул при больших значениях параметра E/N в этих разрядах. Проведено сравнение различных каналов разрушения фреона в зависимости от длительности импульса и содержания СFC в обрабатываемой смеси. Определена энергоцена разрушения одной молекулы CFC в разряде. Установлено, что разрушение CFC в наносекундных разрядах, в отличие от разрядов большей длительности, происходит преимущественно в областях, занятых плазмой, а энергозатраты на очистку при низком содержании фреона оказываются ниже, чем в СВЧ разрядах большей длительности. Показано, что при деструкции фреона, в первую очередь происходит разрыв C-Cl и С-С связей в молекулах CFC, а лишь затем разрушаются более прочные C-F связи в обогащенных фтором продуктах реакций. Определены продукты разрушения фреона в разряде. Установлено, что основным продуктом разрушения фреона являются молекулы хлора, число которых близко к числу разрушенных молекул CFC. Обнаружено, что при определенных условиях конкуренция азотного и хлорного циклов приводит к замедлению распада концентрации озона. На основании данных эксперимента проведена оценка эффективности разрушения фреона с помощью наносекундного СВЧ разряда, создаваемого в тропосфере на высотах 15-30 км.

Разработаны и исследованы мощные источники наносекундного СВЧ излучения на основе временной компрессии импульсов (СВЧ компрессоры). Увеличение мощности сжатых импульсов достигнуто при использовании высокодобротных цилиндрических резонаторов, возбуждаемых на осесимметричных модах с низкими омическими потерями. Для вывода энергии из таких резонаторов разработана серия быстродействующих и электропрочных плазменных переключателей, обладающих резонансными свойствами. Изготовлены и испытаны на высоком уровне мощности различные конструкции активных СВЧ компрессоров с такими переключателями. В схеме двухканального компрессора продемонстрировано когерентное сложения сжатых в каждом из каналов СВЧ импульсов на высоком (~ 5 MВт) уровне падающей мощности. Достигнуты рекордные по энергетике и эффективности параметры импульсов для 3-х сантиметрового диапазона длин волн. Получены сжатые импульсы мощностью 53 МВт и длительностью до 60 нс с коэффициентом усиления по мощности более 10 и эффективностью компрессии 56 %.

Список работ по теме диссертации

Вихарев А.Л., Гильденбург В.Б., Денисов В.П. Иванов О.А. и др. Пробой гелия высокочастотными импульсами наносекундной длительности. // 4-я Всес.конф. по взаимодействию электромагнитных излучений с плазмой: Тез.докл. Ташкент: ФАН, 1985, с.102-103.

Вихарев А.Л., Гильденбург В.Б., Иванов О.А. и др. Пробой газов высокочастотным импульсом наносекундной длительности. // Физика плазмы, 1986, т.12, N12, с.1503-1507.

Vikharev A.L.,Gitlin M.S.,Ivanov O.A. et al. Heating of nitrogen in a pulsed microwave discharge under strong excitation of electron levels. //Proc. 18th Intern. conf. on phenomena in ionized gases. Swansea, UK, 1987, p.46-47.

Vikharev A.L., Gildenburg V.B., Ivanov O.A. et al. Study of gas ionization in a nanosecond microwave pulse. // Ibid.,p.106-107.

Вихарев А.Л., Иванов О.А., Степанов А.Н. Наносекундный СВЧ разряд в газе. // В кн.: Высокочастотный разряд в волновых полях. Горький: ИПФ АН СССР, 1988, с.212-229.

Бабин А.А., Вихарев А.Л., Гинцбург В.А. Иванов О.А. Азотный лазер, возбуждаемый свободно локализованным СВЧ разрядом.// Письма в ЖТФ, 1989, т.15, N5, с.31-33.

Babin A.A., Vikharev A.L., Gintsburg V.A., Ivanov O.A. et al. A nitrogen laser pumped by a freeiy localized microwave discharge.// Proc. 19th Intern. conf. on phenomena in ionized gases. Belgrade, Yugoslavia, 1989, p.632-633.

Богатов Н.А., Брижинев М.П. ,Вихарев А.Л. Иванов О.А. и др. Наносекундный СВЧ разряд в газе высокого давления. //В кн.: Всес. семинар по высокочастотному пробою газов: Тез. докл. Тарту: ТГУ, 1989, с.59-61.

Брижинев М.П., Вихарев А.Л., Голубятников Г.Ю. Иванов О.А. и др. Ионизация газа низкого давления в сверхсильном СВЧ поле. // ЖЭТФ, 1990, т.98, N2, с.434-445.

Вихарев А.Л., Иванов О.А., Ким А.В. Газовые лазеры с накачкой СВЧ излучением. // Релятивистская высокочастотная электроника. Горький: ИПФ АН СССР, 1990, вып.6, с.256-296.

Vikharev A.L., Golubyatnikov G.Yu., Eremin B.G. Ivanov O.A. et al. Gas ionization in a superstrong microwave field. // Proc. 10th European conf. on atomic and molecular physics of ionized gases. Orleans, France, 1990, p.140-141.

загрузка...