Квантовохимическое исследование механизмов миграции атомов водорода в гетероатомных элементоорганических системах (15.08.2007)
Автор: Бабин Юрий Владимирович
R(PC) = 1.842 A Рис.12. Координата реакции синхронного переноса двух атомов водорода при перегруппировке димера диметилфосфинистой кислоты 16 в димер диметилфосфиноксида 17 и некоторые характеристики ПС1. сохраняется копланарность фрагментов Р-О-Н обеих молекул. Траектория спуска из ПС1 имеет интересную особенность. На начальном участке спуска копланарность фрагментов Р-О-Н сохраняется, и энергия плавно уменьшается вплоть до того момента, когда межатомные расстояния Р......Н уменьшаются до 1.431 A. Межатомные расстояния О---Н при этом увеличиваются до 2.453 A. В этой точке в гессиане системы имеется мнимая частота, соответствующая изменению двугранного угла Н-Р...Р-Н. Дальнейший спуск происходит за счет уменьшения этого угла от 1800 до 710 при практически неизменном расстоянии Р···Н. Молекулы оксида разворачиваются относительно друг друга вокруг связей Р?О, возникают 2 водородные связи С-Н···О между фосфорильными атомами кислорода и атомами водорода метильных групп, и образуется димер 17, уже описанный выше. Высота активационного барьера на пути такой бимолекулярной перегруппировки кислоты в оксид составляет ?Е0 = 4.84 ккал/моль, что на порядок меньше высоты барьера для мономолекулярного переноса атома водорода. Таким образом, расчет однозначно показывает, что синхронный перенос двух протонов в димере диметилфосфинистой кислоты 16 осуществляется очень легко, что и объясняет протекание таутомерного перехода (2) в мягких условиях в отсутствие молекул-переносчиков. Перегруппировка димера бис(трифторметил)фосфинистой кислоты 20 в димер бис(трифторметил)фосфиноксида 21 (уравнение 9) с синхронным переносом обоих протонов в цепочках водородных связей Р-О-Н···Р, протекает через переходное состояние ПС2. (СF3)2РОН + (СF3)2РОН ? (СF3)2Р(О)Н + (СF3)2Р(О)Н (9) Координата реакции для этой перегруппировки представлена на рис. 13. Она адекватно описывается изменением одного параметра - межатомных расстояний в цепочках Р-О-Н···Р. Плоскость симметрии, в которой лежат фрагменты Р-О-Н···Р, сохраняется вдоль всего реакционного пути, и в этом случае не наблюдается особенности, отмеченной для перегруппировки (8), связанной с разворотом молекул, поскольку симметричному димеру 21 соответствует от- R(PO) = 1.562 A R(P···H) = 1.592 A R(O···H) = 1.408 A R(PC) = 1.923 A Рис.13. Координата реакции синхронного переноса двух протонов в димере бис(трифторметил)фосфинистой кислоты 20 и некоторые характеристики переходного состояния ПС2. четливый минимум ППЭ. Достаточно низкий активационный барьер процесса (5.41 ккал/моль) показывает, что и в этом случае таутомерные переходы между 6 и 7 могут осуществляться в мягких условиях в отсутствие молекул-переносчиков, что соответствует экспериментальным данным. 2.5. Полуклассическая оценка константы равновесия для перегруппировки фосфинистой кислоты в фосфиноксид С целью оценки точности вычисления констант равновесия прототропной перегруппировки по уравнению изотермы реакции мы построили динамическую модель в приближении гамильтониана реакционного пути (ГРП) для модельной реакции перегруппировки фосфинистой кислоты в фосфиноксид H3PO(H2POH. Согласно нашим результатам, разница в энергиях Гиббса структур фосфинистой кислоты и фосфиноксида равна -3.1 ккал/моль, разница энтальпий -2.5 ккал/моль. (mH — масса протона, равная 1847 а.е.м.). Левый минимум реакционного пути соответствует двум ассоциированным молекулам фосфиноксида, правый — двум молекулам фосфинистой кислоты. Димеризация фосфинистой кислоты сопровождается понижением энтальпии образования на 3.2 ккал/моль, фосфиноксида — на 2.3 ккал/моль с учётом энергии нулевых колебаний. На всём протяжении реакционного пути молекулярная система сохраняет симметрию C2h. Оба атома фосфора, оба атома кислорода и мигрирующие атомы водорода лежат в одной плоскости. Рис. 14. Потенциальная функция перегруппировки V0(s) (пунктир) и функции частот поперечных колебаний в зависимости от естественной координаты реакции s Из рис. 14 видно, что лишь немногие функции ?(s) претерпевают существенные изменения в ходе реакции. В частности, это частоты ?2,3(s), которые в левой части РП представляют собой симметричные и антисимметричные колебания q+(P-H) и q-(P-H), а в правой — q+(O-H) и q-(O-H), соответственно симметрии A( и B(. Высота барьера прямой реакции без учёта нормальных колебаний составляет 5.6 ккал/моль, с учётом нормальных колебаний — 4.1 ккал/моль. Оценка констант скорости прямой kI и обратной kII реакции показывает, что для прямой реакции значения (>2 при T<165K, для обратной — при T<190K. происходит систематическая недооценка значения константы равновесия (см. рис. 15). Таким образом, при исследовании таутомерного равновесия между фосфинистой кислотой H2POH и фосфиноксидом H3PO при комнатной и повышенной температуре необходимо учитывать туннельный эффект, так как при Рис. 15. Температурные функции логарифмов констант равновесия таутомерной перегруппировки фосфиноксида в фосфинистую кислоту, рассчитанных как отношения полных констант скоростей kCUM, надбарьерных вкладов с учётом надбарьерного отражения kARR и вычисленных по уравнению изотермы реакции. использовании уравнения изотермы реакции константа равновесия оказывается недооцененной примерно на ?. Глава 3. Построение и исследование моделей каталитических циклов на металлоорганических комплексах, связанных с процессами переноса атома водорода в реакциях гидроформилирования и гидрирования. 3.1. Теоретические исследования механизмов переноса атома водорода в процессе гидроформилирования алкенов. Приводятся основные известные теоретические и экспериментальные данные о каталитической реакции гидроформилирования на металлорганических комплексах кобальта, родия и платины. Подобно третичным фосфинам, фосфинистые кислоты RR’POH образуют с поздними переходными металлами прочные комплексы (Roundhill, 1975), которые выступают как активные катализаторы в реакциях кросс-сочетания (Li, 2002), гидроформилирования алкенов (Van Leeuven, 1986) и гидрофосфинилирования алкинов (Tanaka, 1996). Однако, в отличие от комплексов третичных фосфинов, эти комплексы стабильны на воздухе вследствие высокой оксидативной устойчивости ГФС. 3.2. Исследование альтернативных каталитических циклов гидроформилирования этилена на комплексах платины с гидрофосфорильными лигандами ???????????$?? ?l?F????"? ?l?F????"? ?l?F????"? ?l?F????"? ?l?F????"? ?l?F????"? ???????????????h2PO)2H]Pt(PPh3)(Н)] (22) протекает с региоселективностью более 90% в очень мягких условиях (уравнение 10). Мы провели теоретическое моделирование механизма этой реакции для молекулы этилена на комплексе [(H2PO)2H]Pt(PH3)(Н)] (3), в котором для сокращения вычислительных затрат Ph-радикалы при атомах фосфора заменены атомами водорода. Для расчетов использованы метод функционала плотности, градиент-корректированный функционал PBE, трехэкспоненциальный набор базисных функций гауссовского типа TZ2P для описания валентных электронов и псевдопотенциалы SBK-JC для остовных электронов. Энергии стационарных точек рассчитаны с учетом поправки на нулевые колебания ZPVE. Табл.3.Некоторые геометрические параметры комплексов 3 и 23 по данным расчета и РСА (Tanaka, 1996). |