Delist.ru

Агрохимический фактор устойчивости серой лесной почвы и (15.07.2007)

Автор: Ушаков Роман Николаевич

урожай-ность, т/га Энерго-содержа-ние,

ГДж/га Общие энергозатраты, ГДж/га Кээ Ширина ЭН

Без удобрений

органо-минераль-ная 1,43 27,2 45,0 0,6 0,71

С-II+в.н.у.+Ог-20

2,69 51,1 46,6 1,1 1,29

Без удобрений минераль-ная 1,40 26,5 42,1 0,6 0,76

1,60 30,4 43,3 0,7 0,77

2,44 46,6 43,5 1,1 1,29

Расчеты показали, что в неблагоприятные по влагообеспеченности годы с ГТК < 1,0 энергетическая эффективность в опытах 1 и 2 была максимальной в вариантах с применением органоминеральной системы удобрений и с совместным внесением азотных, фосфорных и калийных удобрений (минеральная система): значение коэффициента энергетической эффективности составило 1,1 ед., тогда как в варианте без удобрений Кээ составил 0,6 ед.

С энергетических позиций приведенные расчеты подтверждают значимость удобрений в стабилизации продукционного процесса сельскохозяйственных растений в условиях засухи.

1. На формирование урожайности зерна яровых культур влияние оказывают майские осадки, динамика которых указывает на усиление засушливости (уравнение тренда за 60-ти летний период Y = 52,0–0,3X), а также гидротермические условия июня. В отсутствии майских и июньских осадков вероятность получения урожайности зерна яровых культур более 2,0 т/га составляет всего 11 %. Улучшение водообеспеченности в мае повышает вероятность до 70 %. Если улучшение проявляется только в июне, вероятность снижается до 24 %.

При значении гидротермического коэффициента (ГТК) мая и июня около единицы вероятность получения рентабельной урожайности зерна не менее 3,0 т/га составляет 79 %. При ГТК июня меньше 0,7, урожайность становится наиболее зависимой от гидротермических условий мая.

2. В длительных полевых опытах с удобрениями установлена тесная связь (R = 0,7-0,9) урожайности культурных растений от ГТК и удобрений. Совместное внесение азотных, фосфорных и калийных удобрений в дозе 60-80 кг д.в./га позволяет в засушливых условиях на серых лесных почвах получать устойчивую урожайность яровой пшеницы и ячменя около 3,0 т/га, картофеля – 14,4-16,5 т/га. О повышении устойчивости свидетельствует специально выведенные нами абстрактные эколого-экономический коэффициент устойчивости (Кээу), коэффициент устойчивости (Ку) и трансформированный коэффициент устойчивости (ТКУ). По ним определено, что устойчивое производство зерна яровых культур в пределах 3,0 обеспечивается за счет комплексного окультуривания почвы, улучшения почвенного плодородия.

3. Длительное использование одних минеральных удобрений (минеральная система) оказывает неодинаковое влияние на буферную способность серой лесной почвы (устойчивость) к подкислению. Это зависит от кислотности почвы (рНKCl): при рН около 4,4 общая емкость буферности (ЕБк) в сравнении с вариантом без удобрений снижается на 3,5 мМ-экв/100 г и составляет 4,2 мМ-экв/100 г; при рН около 5,0 – ЕБк возрастает до 7,42 мМ-экв/100 г. Замена хлористого аммония на кальциевую селитру увеличивает ЕБк на 1,5 мМ-экв/100 г. Органоминеральная система удобрения при условии формирования кислотности, близкой к нейтральной, увеличения гумуса в сравнении с минеральной системой до 3,0 % способствует возрастанию ЕБк до 10,8 мМ-экв/100 г. При органической системе удобрения почва, в которой содержание гумуса повышается до 5,4 % на фоне близкой к нейтральной реакции почвенного раствора, в состоянии нейтрализовать кислоты, эквивалентной 18,5 мМ/100 г.

4. Благоприятные условия для максимальной адсорбции ТМ при предельной нагрузки по цинку и меди в 13,0 мг/кг, кадмию 15,7 и свинцу 30,9 мг/кг складываются на варианте с органоминеральной системой удобрения при условии создания уровня плодородия не ниже среднего (по существующим моделям). В этом случае величина адсорбционной емкости превышает вариант без удобрений и минеральную систему по цинку и меди на 21-27 мМ/кг, кадмию – на 8-17 мМ/кг и свинцу – на 29-56 мМ/кг.

Мероприятия, направленные на усиление гумификационных процессов в почве, повышают устойчивость почвы к загрязнению. При повышении гумуса до 5 % серая лесная почва увеличивает адсорбционную емкость по отношению к цинку и меди соответственно до 182 и 130 мМ/кг; при содержании гумуса около 3 % она составляет 123 и 104 мМ/кг; еще меньше – 91 и 97 мМ/кг при содержании гумуса 2,0 %.

5. В качестве биоиндикатора устойчивости почвы выступают почвенные микроорганизмы. В сравнении с оптимальными экологическими условиями снижение численности микроорганизмов в неокультуренной почве в засуху, а также при подкислении и загрязнении медью происходит в зависимости от групп микроорганизмов на 44-89 %, в окультуренной – на 0-36 %. Повышение плодородия почвы способствует в отмеченных неблагоприятных условиях среды стабилизации микробной биомассы и снижению метаболического коэффициента. Длительное применение минеральных удобрений в умеренных дозах не приводит к снижению биологической активности почвы.

6. Наилучшими параметрами калийного состояния обладают почвы с высоким содержанием подвижного калия в сочетании с высокими показателями потенциальной буферной способности (РВСк), что позволяет им долгое время поддерживать стабильный уровень калийного питания. Для достижения оптимальной активности калия 0,002-0,0035 М/л, содержание гумуса должно быть не ниже 3,0 %, обменного калия – 20 мг/100 г. При превышении гумуса 3 % (до 3,5 %) и обменного калия 20 мг/100 г улучшается десорбционная способность почвы, поэтому РБСк увеличивается в два раза (с 20-24 до 40-45). При таком диапазоне РБСк достигается относительная активность калия ARo в пределах 0,002-0,003 М/л.

7. За счет сформировавшегося запаса потенциально доступных фосфатов трехлетний перерыв в применении азотных, фосфорных и калийных удобрений в дозе по 60 кг/га, пятилетний перерыв в совместном применении органических (40 т/га) и минеральных удобрений (в среднем ежегодно N94P96K84) не приводит к снижению потенциальной буферной способности к фосфору, что свидетельствует об устойчивом обеспечении культурных растений элементом.

Для формирования устойчивого для серой лесной тяжелосуглинистой почвы фосфатного режима необходимо поддерживать ее десорбционную способность на уровне 0,6-1,3 мг/100 г, концентрацию фосфора – 0,1-0,2 мг/л, кислотность почвы – близкой к нейтральной. При таких условиях потенциальная фосфатная буферность (РБСр) составит 34-45 мл/г. Для этого обеспеченность почвы должна быть выше средней, содержание гумуса не ниже 3,0-3,5%.

С учетом сорбции фосфатов почвой, равновесных концентраций элемента в растворе и степени обеспеченности предложены суммарные дозы фосфорных удобрений на серой лесной тяжелосуглинистой почве.

8. На основе многолетних полевых опытов с минеральной, органо-минеральной и органической системами удобрений разработана ориентировочная, ранжированная на уровни модель физико-химического блока плодородия серой лесной тяжелосуглинистой почвы, которым соответствуют три уровня продуктивности культурных растений (в т/га к. ед.): низкий – меньше 2,7, средний – 2,7-3,5 и высокий – больше 3,5.

Низкий, средний и высокий уровни устойчивости к подкислению достигаются при емкости буферности соответственно < 9, 9-11 и > 11 мМ-экв/100г; к загрязнению – при максимальной адсорбции в соответствии с уровнями цинка < 91, 91-143 и > 143 мМ/кг, меди – < 104, 104 и > 130 мМ/кг, свинца – < 61, 61-132 и > 132 мМ/кг.

Значения относительной активности калия меньше 2 М/л?10–3, РБСк меньше 24 соответствуют низкому уровню устойчивости; если они составляют соответственно 2-4 М/л?10–3 и 24-45 – среднему уровню; для достижения высокого уровня значения данных показателей должны превышать 4 М/л?10–3 и 45.

Для устойчивого фосфатного режима в почве равновесная концентрация фосфора должна быть не меньше 0,2 мг/л, РБСр – не меньше 34-45 мг/г.

9. Оценка поведения минералого-кристаллохимических показателей почвы свидетельствует о том, что длительное (более 40 лет) применение удобрений в установленных дозах не приводит к существенным негативным последствиям для минерального комплекса серой лесной тяжелосуглинистой почвы. В то же время отмечаются слабые тенденции появляющихся деградационных процессов, в особенности если происходит подкисление почвенного раствора.

10. Модификация зернопропашного севооборота путем замены викоовсяной смеси клевером обеспечивает в засуху дополнительную прибавку урожайности овса в пределах 4-6 %. Вклад обработки почвы (углубление на 30 и 40 см) на среднеокультуренном фоне составляет 5 %, на высокоокультуренном – 13 %. Вклад удобрений на фоне углубления пахотного слоя на 30 см составляет 20 % на фоне углубления на 40 см – 37 % . Агротехнологическая схема, рассчитанная на формирование среднего уровня плодородия серой лесной почвы, обеспечивает общий совокупный вклад отмеченных факторов в размере 50–53 %, высокого уровня – 76-80 %.

11. Улучшение плодородия почвы, в частности его агрохимической и физико-химической составляющих, повышает энергетическую эффективность системы земледелия и ее устойчивость в неблагоприятные по водообеспеченности годы, что устанавливается по коэффициенту энергетической эффективности и ширине экологической ниши, рассчитанной по частотному распределению урожайности яровых зерновых культур.

12. В качестве альтернативных способов улучшения экологического состояния почвы предлагаются мероприятия экосистемной направленности, включающие залужение и лесоустроительные работы. В сравнении с пахотным аналогом отмечается повышение устойчивости почвы к загрязнению медью и свинцом, улучшение калийной буферности почвы под широколиственным лесом, свинцом и к подкислению – почвы под лугом.

РЕКОМЕНДАЦИИ ПРОИЗВОДСТВУ

1.Получение стабильных (в пределах 3,5 т/га к. ед. и выше) и устойчивых урожаев культурных растений обеспечивается при следующих агрохимических условиях плодородия серой лесной почвы: содержании гумуса 3,0-3,5 %, относительной активности калия более 4?10–3 М/л, равновесной концентрации фосфора более 0,15 мг/л и близкой к нейтральной реакции почвенного раствора.

2. С позиции формирования устойчивого земледелия при ограниченных ресурсах удобрений необходимо вводить севообороты с клевером.

3. Для улучшения культурных растений фосфатным и калийным питанием, постепенной трансформации серой лесной почвы с низкой и средней обеспеченностью в следующие высокие классы суммарная доза фосфорных удобрений должна быть при низкой обеспеченности не ниже 470 кг/га, средней – 200 кг/га, калийных не ниже 200 кг/га – для низкой обеспеченности и 130 кг/га – средней.

4. Для составления прогнозных оценок изменения калийного и фосфатного режимов при использовании удобрений, регулирования питания использовать разработанный физико-химический блок плодородия почвы.

5. При агрохимическом обследовании почв реперных участков для характеристики их фосфатного и калийного режимов, наряду с содержанием подвижного фосфора и обменного калия (в 0,2 н HCl по Кирсанову), предлагается использовать концентрацию Р2О5 в вытяжке 0,01 М СaCl2, калия – в 0,002 М СaCl2

6. В случае повышения риска подкисления или загрязнения почвы следует трансформировать пахотные угодья в луговые экосистемы без выведения из сельскохозяйственного оборота.

Ведущие научные рецензируемые журналы:

1. Ильина Л.В., Ушаков Р.Н., Возняковская Ю.М., Аврова Н.П. Использование растительной биомассы для повышения плодородия почв и продуктивности земледелия // Земледелие.- 1998.- №5.- С. 42-44.

2. Ушаков Р.Н. Агрохимическое значение плодородия в борьбе с засухой // Межд. с.-х. журнал.- 2000.- № 3.- С. 56-57.3. Ушаков Р.Н. Микробная плазма - ценное органическое удобрение // Межд. с.-х. журнал. 2001.- № 2.- С. 17-18.

загрузка...