Delist.ru

Совершенствование технологии послеуборочной обработки семян фпакционированием и технических средств для ее реализации (15.07.2007)

Автор: Оробинский Владимир Иванович

Такое переоборудование решётного стана можно выполнить в условиях производства.

При использовании таких решётных станов для предварительной очистки зернового вороха озимой пшеницы наиболее предпочтительно в верхнем ярусе устанавливать последовательно решёта с круглыми отверстиями диаметром 8 и 10 мм, а в нижнем ярусе - с продолговатыми отверстиями шириной 1,7 мм. При исходной засорённости зернового вороха 9,03% и производительности 54 т/ч полнота выделения засорителей только на решётных станах составила 0,32%, а с учётом выделения засорителей в пневмосепарирующих каналах первой и второй аспирации - 0,62%.

Важнейшее направление повышения производительности зерноочистительных машин - интенсификация процесса сепарации за счёт снижения забиваемости решёт.

Существуют различные способы и механизмы очистки плоских решёт, среди которых в последние время все большее распространение получают шариковые очистители. Они включают плоское решето с расположенной под ним отражательной поверхностью, разделённой на ячейки, в которых размещены шарики.

Практика показала, что недостатком такой отражательной поверхности является нарушение сварных соединений между прутками сетки за счёт большой дина-мической нагрузки при возвратно-поступательном движении ре-шётного стана. Это приводит к увеличению расстояния между отдельными прутками и, как сле-дствие, к потере шариков и ухудшению качества очистки решёт.

В ячейках при значительных горизонтальных составляющих амплитуды колебаний решётного стана нарушается периодичность движения.

Нами была изготовлена штампованная перфорированная отражательная поверхность, показанная на рисунке 19. Были проведены исследования предложенной отражательной поверхности в сравнении с сетчатыми и плоской перфорированной. Исследования проводили при очистке зернового вороха озимой пшеницы на экспериментальной установке с частотой колебаний решётного стана 375 мин-1, амплитудой 15 мм и производительностью 20 т/ч (в расчете на ширину решётного стана 1500 мм).

Зерно разделяли на решете с продолговатыми отверстиями шириной 2,4 мм. В качестве очистительных элементов использовали резиновые шарики диаметром 28 мм. Результаты исследований представлены в таблице 5.

Таблица 5. Влияние типа отражательной поверхности и количества шариков на коэффициент использования живого сечения решета

Тип отражательной поверхности Ширина ячейки, мм Количество шариков в ячейке, шт. К

Перфорированная рифлёная поверхность с диаметром отверстий 17 мм

Сетчатая поверхность с шагом прутков 20 мм 245 12

Сетчатая поверхность с шагом прутков 15 мм 245 12

Плоская перфорированная поверхность с диаметром отверстий 17 мм

Анализ результатов исследований показывает, что при одинаковых режимах работы решётного стана и одинаковом количестве шариков лучшее качество очистки решёт получено при постановке перфорированной рифленой отражательной поверхности, несколько худшие показатели получены при использовании сетчатой отражательной поверхности с шагом прутков 20 и 15 мм и существенно худшие при использовании плоской перфорированной поверхности. В последнем случае существенно ухудшается отражательная способность поверхности, так как уменьшаются количество и энергия ударов шарика по решету.

При использовании перфорированной рифленой поверхности и одинаковом количестве шариков в ячейке (12 и 3) коэффициент использования живого сечения сортировального решета составил 0,84, тогда как с сетчатой отражательной поверхностью с шагом прутков 20 и 15 мм - соответственно 0,81 и 0,79, а при использовании в качестве отражательной поверхности плоской перфорированной рифлёной поверхности с диаметром отверстий 17 мм - только 0,59. Наряду с этим перфорированная рифлёная поверхность обеспечивает надежную работу механизма очистки решёт.

В седьмой главе "Влияние производительности зерноочистительных машин на показатели их работы" представлены результаты исследований закономерности распределения зерна по фракциям, качество зерна каждой фракции, потери зерна, масса 1000 зёрен в зависимости от производительности машин. Данные о распределении компонентов вороха по выходам в зависимости от производительности машин приведены на рисунках 20, 21 и 22. Анализ приведённых данных показывает, что с увеличением производительности с 10,5 до 57,6 т/ч (машина ОЗФ - 50/25/10) и с 18,0 до 86,4 т/ч (машина ОЗФ - 80/40/20) выход очищенного зерна (рисунок 20) возрастает соответственно с 73,11 до 90,27% и с 78,32 до 90,24%, при этом наблюдается снижение выхода в фуражную и отходовую фракции.

С увеличением производительности машин возрастает вероятность выхода в очищенное зерно щуплых, биологически неполноценных зерновок, которые следует использовать на фуражные цели.

Выход фуражной фракции (рисунок 21) снижается соответственно с 20,47 до 6,94% и с 15,86 до 6,44%. Снижение выхода фуражной фракции обусловливается снижением вероятности прохождения мелкой фра-кции через слой зерна, движущегося по поверхности решёт. Количество вороха, выносимого в отходовую фракцию (рисунок 22) при отмеченных производительностях, снижается соответственно с 6,42 до 2,79% и с 5,82 до 3,32%.

Качественные показатели работы зерноочистительных машин зависят от конструктивных и режимных параметров самой машины и состава вороха, поступающего на послеуборочную обработку (рисунок 23).

Анализ результатов исследований, представленных на рисунке 23, показывает, что с увеличением производительности машин ОЗФ - 50/25/10 с 10,5 до 57,6 и ОЗФ - 80/40/20 с 18 до 86,4 т/ч наблюдается снижение выхода целого зерна соответственно с 98,81 до 97,28% и с 99,52 до 95,72%.

Лучшее качество очистки зерна машиной ОЗФ-80/40/20 объясняется большей площадью сортировальных решёт. Количество зерна в плёнке с увеличением производительности машин ОЗФ-50 и ОЗФ-80 возрастает соответственно с 0,45 до 1,13% и с 0,15 до 1,26%. Количество дроблёного зерна возрастает соответственно с 0,65 до 1,15% и с 0,3 до 1,92%.

фуражную фракцию при меньшей площади сортировальных решёт. Увеличение же содержания зерна дроблёного и в плёнке с повышением производительности объясняется уменьшением вероятности его выделения через слой большей толщины.

Количество засорителей при отмеченных подачах возрастает с 0,09 до 0,44% и с 0,03 до 1,10% в связи с ухудшением сепарирующей способности решёт и снижением эффективности работы каналов первой и второй аспирационных систем.

В очищенном зерне остается также часть мелких и биологически неполноценных зерновок из-за недостаточной полноты их выделения (таблица 6).

Таблица 6. Содержание мелких и биологически неполноценных зерновок в очищенном зерне.

Производительность, т/ч Содержание мелких и биологически неполноценных зерновок в очищенном зерне, %

ОЗФ-50/25/10 ОЗФ-80/40/20

выделенных проходом через решето

(2,6 мм выделенных воздухом при скорости

9 м/с всего выделенных проходом через решето

(2,6 мм выделенных воздухом при скорости

9 м/с всего

10,5 12,02 11,60 23,80 - - -

18,0 14,2 12,40 26,60 14,10 11,92 26,02

27,0 18,57 14,32 32,89 17,65 13,24 30,89

36,0 23,80 14,79 38,59 - - -

Продолжение таблицы 6

41,4 - - - 21,80 14,12 35,82

55,4 - - - 22,30 15,30 38,60

загрузка...