Delist.ru

Математическое моделирование структурно-чувствительных свойств высокотемпературных сверхпроводников (07.09.2007)

Автор: Паринов Иван Анатольевич

Сначала с использованием модифицированной процедуры метода Монте-Карло проводится моделирование крупнозернистых структур YBCO, получаемых из расплава. При этом эволюция микроструктуры YBCO после первичной рекристаллизации моделировалась с учетом дисперсных частиц Y-211 в матрице Y-123 и введения кристаллита(затравки в структуру зерен Y-123. Далее рассмотрены возможные механизмы упрочнения в случае композитной структуры YBa2Cu3O7-x/Y2BaCuO5, связанные с отклонением трещины вокруг частиц Y-211, сковыванием берегов трещины частицами и упрочнение, обусловленное периоди-

чески-распределенными включениями, моделируемыми различными дислокационными структурами. Результаты, полученные на основе данных моделей, показывают увеличение упрочнения сверхпроводящего композита с ростом размера и концентрации частиц Y-211.

В качестве следующей задачи рассмотрено влияние на рост усталостной трещины (малоцикловая усталость) микроструктурного несоответствия, определяемого невозможностью осреднения прочностных свойств по включенным в рассмотрение зернам, а также существованием зависимости от длины трещины. Используем модифицированную модель Баренблатта-Дагдейла (БД) для описания процессов в вершине трещины. Заменим классическую БД-трещину c зонами процесса в ее вершинах (представляющими протяженные области сцепления берегов трещины) суперпозицией двух систем нагружения, показанных на рис.8. Тогда для случая циклической нагрузки приращение трещиностойкости для больших трещин ((КIc) может быть найдено в виде суммы: (КIc = (Кc + (Кcd , где (Кc ( приращение трещиностойкости в случае малых трещин, а (Кcd ( локальное приращение трещиностойкости, вводимое в результате микроструктурного несоответствия и разориентации зерен.

( удельная энергия разрушения, соответственно, для случая бездефектного и дефектного материала; E1(0) и (1(0) ( соответствующие упругие модули. Последующая оценка удельной энергии разрушения в зависимости от микроструктуры материала и изменения тем-пературы при остывании образца позволяет полностью завершить решение данной задачи.

Далее выполнено моделирование процессов изготовления и разрушения керамики Bi-2223, полученной методом горячего прессования. При этом учитывается влияние текстуры на рост зерен, который, в данном случае контролируется параметром торможения, зависящим от объемной доли и размера частиц второстепенных фаз. При моделировании вторичной рекристаллизации рассматривается зависимость энергии и подвижности ИГ от разориен-

Рис. 8. Трещина Баренблатта-Дагдейла, представляющая малую трещину, которая нарушает микроструктур-

), обусловленные микроструктурным несоответствием

тации зерен, используя соответствующую текстурную компоненту для каждого зерна. После окончания моделирования микроструктуры образца, в него вводятся дисперсные частицы серебра в соответствии с имеющимися тройными точками (в которых обычно располагаются микродефекты, залечиваемые Ag) и заданной концентрацией серебра. Далее исследуется увеличение вязкости сверхпроводящей матрицы, упрочненной пластическими включениями Ag, сковывающими берега прорастающей трещины. Полученные численные результаты показывают увеличение вязкости композита с ростом концентрации серебра и уменьшением размера зерна.

Затем представлены результаты исследований прочности и трещиностойкости Джозефсоновских переходов и ВТСП-композитов. Разработан ряд моделей для оценки прочностных характеристик слоистых композитов типа S(I(S и S(N(S с учетом зарождения и роста дефектов вблизи и на границе раздела материалов, анизотропии теплового расширения, геометрических и материальных параметров, внешних воздействий и остаточных напряжений. Для оценки прочностных параметров и исследования особенностей разрушения пленок на подложках использовалась теория композитного бруса в предположении существования начального микродефекта ( трещины на краю образца. При маломасштабном течении подложки исследовано установившееся состояние поперечного растрескивания пленки.

Для краевых переходов с наклонными интерфейсами оценивалось изменение скорости освобождения энергии деформации с учетом условия проскальзывания и блокировки берегов трещины в зависимости от фазового угла нагружения (, углов трения ( и наклона (. Экранирование трещины (G/G показывает немонотонное поведение в зависимости от фазового угла нагружения (. Сначала величина (G/G растет, а затем уменьшается с увеличением ( (рис. 9). Присутствие трения приводит к сдвигу максимумов кривых в направлении увеличения (, восстанавливая обычную тенденцию роста экранирования трещины вместе с фазовым углом нагружения. В то же время смещение максимумов в направлении уменьшения ( имеет место при увеличении изгиба интерфейса (. Наличие трения может вводить механизм противоположный экранированию трещины ( процесс ее расширения ((G ( 0). Поэтому максимальные значения экранирования трещины для данного типа ВТСП ДП могут быть найдены благодаря одновременному выбору параметров (, ( и ( в соответствии с тенденциями, представленными на рис. 9.

Рис. 9. Тенденции в экранировании трещины ((G/G) в зависимости от фазового уг-

ла нагружения (, угла изгиба интерфейса ( и угла трения (. Сплошные линии соот-

ветствуют случаю отсутствия трения (( = 0(), а штриховые ( значению ( = 45(

( присущая вязкость матрицы без элементов упрочнения; (, I ( геометрические константы, определяемые формой трещины; ( ( касательное напряжение на интерфейсе с учетом трения скольжения.

Кроме того, рассмотрены две задачи о росте трещин параллельно металлической прослойке в ВТСП-системах типа S-N-S. Для различных материальных параметров оценены различные прочностные свойства и обсуждены особенности разрушения. В слоистых системах типа S(N(S действующие механизмы упрочнения определяются наличием интерфейсов, которые отклоняют от прямолинейности растущую трещину и вводят микрорастрескивание, направленное из плоскости роста трещины вследствие чего формируются связи-мостики, увеличивающие вязкость и сопротивление разрушению на стадии докритического развития трещины вдоль металлокерамических интерфейсов. Микротрещины-поры, сформировавшие-ся при изготовлении и локализованные на металлокерамическом интерфейсе, при последующем нагружении способствуют выпучиванию и вытяжению металлической прослойки, что сковывает продвижение трещины. Для трещины в установившемся состоянии оценивается упрочнение при вытяжении металлического слоя, сцепленного с хрупким основанием по одной стороне, а также упрочнение при разрушении вдоль узорчатых интерфейсов, обусловленное отклонениями трещины от прямолинейности.

Далее, в результате проведенного критического анализа существующих представлений об особенностях разрушения ВТСП, предлагается определять полное сопротивление раз-рушению, соответственно в силовом и энергетическом подходах, с учетом механизмов упрочнения (разупрочнения), действующих в различных высокотемпературных сверхпроводниках, в следующем виде:

( соответствующий присущий параметр без учета упрочнения (разупрочнения). n – общее число механизмов упрочнения и разупрочнения.

Пятая глава заканчивается представлением моделей эффективных токопроводящих свойств и численных результатов для крупнозернистых образцов YBCO, получаемых из расплава; образцов, использованных для оценки влияния микроструктурного несоответствия, а также горячепрессованной керамики Bi-2223. Кроме микроструктурных элементов, рассмотренных в главе 4 в аналогичных моделях для YBCO-керамики, дополнительно учитывались разориентация зерен и нормальные включения вторых фаз. В каждом случае обсуждались вопросы корреляции между микроструктурными, прочностными и токопроводящими свойствами.

В заключении сформулированы основные результаты работы.

В приложении А представлены дополнительные сведения о кристаллографической и композиционной структуре ВТСП, а также о других их свойствах.

В приложении Б представлен порядок вычисления эффективной теплопроводности модельных ВТСП-систем, изученных в главах 3(5.

В приложении В представлены акты использования результатов диссертации, опубликованные монографии и медали, полученные на различных выставках.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Впервые, представлена общая концепция вычислительного мониторинга микроструктурных превращений и структурно-чувствительных свойств ВТСП-керамик и композитов, учитывающая технологию получения, и композиционные особенности сверхпроводника, а также влияние нагружения при изготовлении и работе материала в различных режимах. Разработана новая схема двухуровневого моделирования и представлены вычислительные алгоритмы для микро- и макроструктурных процессов при изготовлении и разрушении ВТСП-керамики с учетом нагревания, усадки и остывания материала, роста зерен и микрорастрескивания образца. В случае макроструктурного рассмотрения спекания порошка прекурсора, рассматривается начально-краевая задача для квазилинейного уравнения теплопроводности. При исследовании формирования микроструктуры в области распространения теплового фронта используется процедура метода Монте-Карло на квадратной сетке, моделирующей рассматриваемую область. При остывании образца моделируется микрорастрескивание интеркристаллитных границ, сформированных при спекании и усадки. В рамках теории графов разработаны новые модели роста макротрещин по интер-, транскристаллитному и смешанному механизмам с учетом микрорастрескивания, пористости и зернистой фазы ВТСП-образца. Реализация указанной схемы для конкретных составов и технологий изготовления сверхпроводников позволяет оценить прочностные и токопроводящие свойства в зависимости от ряда технологических и композиционных параметров.

2. Выполнено компьютерное моделирование и представлены вычислительные алгоритмы для формирования микроструктуры спеченной в градиенте температур сверхпроводящей керамики YBCO и ее разрушения. Впервые, разработаны модели развития макротрещин и соответствующих зон процессов микрорастрескивания и двойникования в окрестности трещины, ее ветвления и образования мостиков за фронтом трещины в ВТСП-керамике. В известных моделях для аналогичных керамик на гексагональной сетке все границы зерен имеют одинаковую длину и на каждой из них существует тройная точка ( зародыш микротрещины. Это не позволяет смоделировать конечную зону микрорастрескивания при достижении гранью критического размера. В то же время, представленная модель на квадратной сетке способна моделировать границы зерен разных размеров. Численные результаты показывают, что основным механизмом упрочнения керамики YBCO, обладающей анизотропией теплового расширения зерен, является процесс формирования и разрушения зерен-мостиков за фронтом трещины. В то же время, моделирование двойникования в окрестности макротрещины в ВТСП демонстрирует, отсутствие реального упрочнения материала. Это объясняется очень низкими значениями характеристик, определяющих спонтанную деформацию в YBCO, по сравнению с соответствующими величинами для частично стабилизированного ZrO2 и сегнетокерамики BaTiO3, где процессы двойникования играют главную роль в упрочнении материала.

3. Проектирование микроструктуры керамики YBCO, оптимальной с точки зрения прочности материала, связано с введением зерен-мостиков на пути вероятного развития макротрещины при соответствующем подавлении "вредного" микрорастрескивания в этой зоне. Это предполагает необходимость образования зерен сверхпроводящей фазы с максимально допустимыми размерами, не превышающими критической величины спонтанного растрескивания, и распределением, имеющим максимально возможный параметр структурной неоднородности. При проведении расчетов и оптимизации микроструктурных и прочностных свойств ВТСП-керамики наряду с начальной пористостью пресспорошка необходимо учитывать параметр торможения роста зерен, зависящий от размера и концентрации частиц второй фазы, а также длину пролета мостика. Первый определяется всей историей изготовления керамики и ее композицией (т. е. температурными режимами, примесными добавками и т. д.). Второй является ключевым параметром механизма формирования и разрушения мостиков-зерен за фронтом макротрещины, устанавливающим переход от упрочнения к уменьшению сопротивления разрушению материала.

4. Выполнено компьютерное моделирование и представлены вычислительные алгоритмы для модельных структур: крупнозернистых образцов YBCO, полученных из расплава; случая микроструктурного несоответствия при малоцикловой усталости YBCO и керамики BSCCO. Для указанных трех примеров получены следующие результаты:

а). Модифицированная процедура метода Монте-Карло использована для моделирования крупнозернистых структур YBCO. При этом эволюция микроструктуры моделировалась с учетом дисперсных частиц 211 в матрице 123 и введения кристаллита(затравки в структуру зерен 123. Впервые, представлены модели возможных механизмов упрочнения, связанных с отклонением трещины вокруг частиц 211, сковыванием берегов трещины частицами и наличием периодически-распределенных включений. Анализ результатов показывает, что упрочнение сверхпроводящего композита увеличивается с ростом размера и концентрации частиц 211. При этом упрочнение, обусловленное дисперсными частицами, более эффективно при зарождении трещины, нежели при ее росте.

б). Модифицированная модель Баренблатта-Дагдейла использована для исследования влияния на рост усталостной трещины в сверхпроводнике YBCO микроструктурного несоответствия. Численный анализ показывает, что увеличение скорости нагревания обусловливает рост микроструктурного несоответствия с соответствующим негативным влиянием на микроструктурные и прочностные свойства, что совпадает с известными экспериментальными результатами.

в). Впервые, выполнено моделирование процессов изготовления и разрушения керамики Bi-2223, полученной методом горячего прессования, с учетом влияния текстуры на рост зерен. Исследовано увеличение вязкости сверхпроводящей матрицы, упрочненной пластическими включениями серебра, сковывающими берега прорастающей трещины. Полученные численные результаты показывают увеличение вязкости композита вместе с ростом концентрации серебра и уменьшением размера зерна.

5. Впервые, на основе модельных представлений систематически исследованы прочностные характеристики слоистых ВТСП-композитов типа S(I(S и S(N(S с учетом зарождения и роста дефектов вблизи и на границе раздела материалов, анизотропии теплового расширения компонент, геометрических и материальных параметров, внешних воздействий и остаточных напряжений. Изучены особенности разрушения ВТСП ДП и действующие механизмы упрочнения. Проведен критический анализ существующих представлений об особенностях разрушения ВТСП и предложен подход для оценки полного сопротивления разрушению в силовом и энергетическом подходах, с учетом механизмов упрочнения (разупрочнения), действующих в различных высокотемпературных сверхпроводниках.

6. Теория перколяции использована для создания соответствующих вычислительных алгоритмов и определения эффективной электропроводности модельных структур: YBCO-керамики, расплавных образцов YBCO, в случае микроструктурного несоответствия и керамики BSCCO. Численное моделирование учитывает в различных примерах пористость, сетку интеркристаллитных границ и микротрещин, наличие несверхпроводящих включений и текстуру образца. Результаты указывают на необходимость оптимизации противоположных эффектов, определяющих структурно-чувствительные свойства сверхпроводника. Рассмотренные четыре примера приводят к следующим выводам:

а). Для керамики YBCO подчеркивается роль интеркристаллитных границ и необходимость получения крупнозернистых структур. Однако, увеличенное микрорастрескивание границ зерен при остывании в этом случае может привести к ухудшению сверхпроводящих свойств.

б). С ростом концентрации частиц нормальной фазы 211 и с уменьшением размера затравки ухудшаются проводящие характеристики YBCO. В то же время, рассмотренные механизмы упрочнения приводят к увеличению трещиностойкости модельных структур (что, в свою очередь, оказывает косвенное воздействие на улучшение токопроводящих свойств) в случае роста размера и концентрации дисперсии нормальной фазы 211 в сверхпроводящей матрице 123.

в). Токопроводящие свойства YBCO ухудшаются с увеличением скорости нагревания, что совпадает с модельными результатами и наблюдающимися тенденциями в изменении микроструктурных и прочностных свойств.

г). Более густая сетка интеркристаллитных границ и особенно разориентация соседних зерен приводят к большей степени деградации транспортных свойств в случае мелкозернистой керамики Bi-2223, демонстрирующей большее упрочнение, обусловленное дисперсией серебра, по сравнению с некоторым увеличением микрорастрескивания крупнозернистых структур, показывающих улучшенные токопроводящие свойства.

7. Для проверки утверждения о том, что при длительном спекании одножильных сверхпроводящих лент Bi-2223/Ag основным источником понижения критического тока является вытеснение свинца из состава с соответствующей деградацией пиннинга магнитного потока, разработана феноменологическая модель формирования и развития пор вследствие диффузионных процессов при спекании. Микроструктурные превращения пористости изучены в рамках модели возможного отрыва поры от интеркристаллитной границы внутрь зерна. С помощью полученного соотношения для критического размера пор, отрывающихся от границ зерен в процессе длительного обжига одножильных лент Bi-2223/Ag, показано, что такие поры могут на несколько порядков величины превышать длину когерентности. Они не могут служить эффективными центрами пиннинга и, вследствие перколяционных особенностей сверхпроводящей структуры, должны существенно понижать величину критического тока. Этот эффект является более важным по сравнению с ухудшением пиннинга вследствие вытеснения свинца из состава.

8. Разработан критерий пластичности и ассоциированный закон пластического течения, которые могут описать как движение в объеме ВТСП-образца, так и консолидацию порошка в процессе уплотняющего воздействия. В отличие от классических критериев пластичности (например, критерия Кулона(Мора), предложенный критерий представляет собой замкнутую кривую в форме эллипса с ассиметричными условиями для растягивающих и сжимающих нагрузок, адекватно описывающую поведение порошка при уплотнении. В предложенном критерии пластичности и ассоциированном законе течения с помощью добавления первого инварианта тензора напряжений учтен эффект объемного изменения, оказываемый на деформацию порошка при его уплотнении. В рамках неассоциированной пластичности для ВТСП-порошка представлен новый критерий пластичности с законом течения, основанным на правиле дилатансии и рассмотрении процессов диссипации вследствие перегруппировки и трения порошинок. Получены условия, определяющие поведение частиц как почти абсолютно жестких тел и случай уплотнения образца.

9. Впервые, разработана математическая модель осаждения углерода и образования карбонатов в объеме сверхпроводника, что приводит к охрупчиванию ИГ и формированию слабых связей. Предполагается одновременное действие нескольких совместных процессов: диффузии углерода, осаждения карбоната, потока немеханической энергии и деформации материала. С учетом указанных явлений получены определяющие уравнения для исследования углеродного охрупчивания и сопутствующих процессов разрушения сверхпроводника. Представлена схема МКЭ для численной реализации определяющих уравнений, описывающих, диффузию углерода и поток немеханической энергии Адекватные численные результаты с использованием указанной схемы могут быть получены после предварительного проведения экспериментов, позволяющих оценить необходимые для вычислений характеристики.

10. Представлена новая модель медленного (быстрого) равновесного роста трещины в ВТСП при наличии экранирующего поля дислокаций в условиях выделения углерода на интеркристаллитных границах и берегах трещины. В отличие от известных моделей, разработанных для аналогичных материалов, модель учитывает не только эффект охрупчивания, вызванный углеродом, но и условия в вершине трещины, обусловленные выделением углерода. Полученные численные результаты свидетельствуют о том, что осаждение углерода в ВТСП способствует медленному росту трещины с большей вероятностью, чем быстрому разрушению, аналогично наблюдаемым экспериментальным тенденциям в случае выделения гидридов в металлах.

загрузка...