Delist.ru

Математическое моделирование структурно-чувствительных свойств высокотемпературных сверхпроводников (07.09.2007)

Автор: Паринов Иван Анатольевич

ПАРИНОВ ИВАН АНАТОЛЬЕВИЧ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНО-ЧУВСТВИТЕЛЬНЫХ СВОЙСТВ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ

Специальность 05.13.18 ( Математическое моделирование, численные

методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Новочеркасск 2007

Работа выполнена в Научно-исследовательском институте механики и прикладной математики им. Воровича И. И. Федерального государственного образовательного учреждения высшего профессионального образования "Южный федеральный университет"

Научный консультант: доктор физико-математических наук,

профессор Белоконь Александр Владимирович

Официальные оппоненты: доктор физико-математических наук,

профессор Игнатьев Вячеслав Константинович

доктор технических наук,

профессор Соболь Борис Владимирович

доктор технических наук,

профессор Герасименко Юрий Яковлевич

Ведущая организация: Кубанский государственный университет

Защита состоится _ ноября 2007 г. в ______ в 107 ауд. (главный корпус) на заседании диссертационного совета Д.212.304.02 в ГОУ ВПО “Южно-Российский государственный технический университет (Новочеркасский политехнический институт)” по адресу:

346428, г. Новочеркасск Ростовской обл., ул. Просвещения, 132

С диссертацией можно ознакомиться в библиотеке ЮРГТУ (НПИ) по адресу:

346428, г. Новочеркасск Ростовской обл., ул. Просвещения, 132

Автореферат разослан _____ 2007 г.

Ученый секретарь диссертационного совета,

к. т. н., профессор А. Н. Иванченко

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Открытие в 1986 г. высокотемпературных сверхпроводников (ВТСП) на основе оксидов меди с температурой перехода в сверхпроводящее состояние Тс большей, чем температура дешевого, нетоксичного и доступного жидкого азота (77 К), ознаменовало качественный скачок в разработке и применении новых технических проводников, устройств передачи, превращения и сохранения энергии. Наряду с достаточно высокими значениями Тс, другими основными особенностями, определяющими микроструктуру и свойства ВТСП являются: присущая хрупкость оксидных купратов, слоистая анизотропная структура и сверхмалая (( 1 нм) длина когерентности (, представляющая собой пространственную характеристику сверхпроводящих электронов. Вследствие указанных особенностей даже интеркристаллитной границы бывает достаточно для подавления сверхпроводимости, а структурно-чувствительные свойства ВТСП-систем во многом зависят от характеристик слабых связей границ зерен при их изготовлении в виде поликристалла, демонстрируя сосуществование внутри- и межзеренных токов. Поверхности раздела типа "сверхпроводник ( металл с нормальными свойствами", "сверхпроводник ( изолятор" и производные от них являются местами локализации дефектов различной природы. Микроструктурные особенности, связанные с фазовым составом, доменной структурой, кристаллографическими свойствами, наличием структурных дефектов, пор, микротрещин, включений и т. д., непосредственно определяют полезные свойства ВТСП-материалов и композитов.

Актуальность работы определяется огромными изменениями в окружающем мире, оказывающими решающее влияние на будущее сверхпроводимости. Ускоряющиеся нужды требуют соответствующего увеличения глобальной электрификации России. Вместе с тем, существуют значительные проблемы, связанные с ограниченными природными ресурсами, необходимостью защиты окружающей среды, громадными размерами территории. Все это заставляет обратить особое внимание на проблему эффективного использования энергии. Очевидно, не существует иной альтернативы для увеличения уровня жизни населения, чем решение указанной задачи. Успешное использование прикладной сверхпроводимости может стать главным ответом на возникающие потребности. Оно приобретает даже более важное значение, чем развитие возобновляемых источников энергии: солнечной, геотермальной, атомной, а также энергии воды и ветра. Кроме того, актуальность работы определяется началом применения в 90-х годах высокотемпературных сверхпроводников в конкретных изделиях и устройствах, развивающимися возможностями замены низкотемпературных сверхпроводников ( высокотемпературными и необходимостью существенного повышения сверхпроводящих, прочностных и других структурно-чувствительных свойств ВТСП.

Сложность композиционных особенностей ВТСП и многочисленность технологий их получения, связанных со сверхчувствительностью конечных свойств образца от малейших изменений технологического процесса, обусловливают необходимость разработки эффективных методов компьютерного моделирования, способного при минимальных затратах выработать конкретные рекомендации по оптимизации как композиции сверхпроводника, так и технологии его изготовления.

Существенный вклад в создание физических и математических моделей, в развитие технологий ВТСП, оптимизацию их композиции и структуры, внесли: Е. В. Антипов, Ю. А. Бойков, Г. Ф. Воронин, С. А. Гриднев, Е. А. Гудилин, Ю. Н. Дроздов, Н. В. Заварицкий, М. Ф. Имаев, В. Д. Нацик, Ю. Н. Ноздрин, Ю. А. Осипьян, А. Л. Рахманов, В. Н. Тимофеев, В. Г. Флейшлер, А. К. Шиков, U. Balachandran, J. G. Bednorz, D. A. Cardwell, C. W. Chu, M. P. Delamare, G. Desgardin, P. Diko, R. Fluekiger, H. C. Freyhardt, K. C. Goretta, A. Goyal, Z. Han, E. E. Hellstrom, C.-J. Kim, P., Kova?, D. C. Larbalestier, H. K. Liu, T. Miyamoto, K.A. Mueller, M. Murakami, K. Osamura, J. A. Parrell, N.Sakai, G. J. Schmitz, S. Sengupta, Z. Z. Sheng, B. ten Haken, Y. Yamada, Y. S. Yuan, W. Zhang и др.

Большое влияние на развитие математических моделей физики прочности и механики разрушения оказали: Г. И. Баренблатт, В. В. Болотин, Р. В. Гольдштейн, А. А. Ильюшин, А. Ю. Ишлинский, А. А. Лебедев, Н. А. Махутов, Н. Ф. Морозов, Г. Г. Писаренко, Г. П. Черепанов, J. C. Amazigo, M. F. Ashby, S. J. Bennison, B.Budiansky, B. N. Cox, R. W. Davidge, D. S. Dugdale, A. G. Evans, K. T. Faber, M. S. Hu, J. W. Hutchinson, N. Laws, D. B. Marshall, R. M. McMeeking, J. R. Rice, L. R. F. Rose, M. V. Swain, M. D. Thouless, V. Tvergaard, C. Cm. Wu и др.

Диссертация соответствует ряду разделов “Приоритетных направлений развития науки, технологий и техники в РФ” и перечня “Критических технологий РФ”, утвержденных распоряжением Президента РФ (ПР(843 от 21.05.2006 г.). Основные результаты диссертации получены в ходе выполнения следующих грантов государственных научно-технических программ, отечественных и международных фондов, которыми руководил автор:

1. Разработка и создание мониторинга микроструктурных и прочностных свойств поликристаллических керамик (РФФИ N 95-01-00072-а, 1995-1997 гг.).

2. Разработка метода вычислительного эксперимента и его применение к исследованию микроструктурных превращений, сопровождающих изготовление и разрушение оксидных керамик (ГоскомВУЗ РФ, программа по фундаментальным проблемам в области металлургии, УГТУ, г. Екатеринбург, 1996-1997 гг.; приказ ГК РФ по высшему образованию N859 от 08.05.96);

3. Создание эффективного теоретико-вычислительного подхода к исследованию микроструктурных, механических и прочностных характеристик ряда конструкционных материалов для автомобильного транспорта (Министерство общего и профессионального образования РФ, программа по фундаментальным исследованиям в области транспортных наук, МГИУ, г. Москва, 1997-1998 гг.; приказ МОПО РФ N 1066 от 02.06.97);

4. Разработка методов исследования механической деградации и сопротивления разрушению современных материалов для новых высокоэффективных двигателей и энергетических установок летательных аппаратов (Министерство общего и профессионального образования РФ, программа по фундаментальным исследованиям в области авиационной и ракетно-космической техники, МАИ, г. Москва, 1999-2000 гг.; приказ МОПО РФ N 1521 от 09.06.99);

5. Разработка методов и экспериментальных средств исследования микроструктурных превращений, сопровождающих изготовление высокотемпературных сверхпроводников (Министерство образования РФ, программа по фундаментальным исследованиям в области естественных наук, С-ПГУ, г. Санкт-Петербург, 2001-2002 гг.; грант N Е00-3.4-517);

6. Международная программа COBASE (Collaboration for Basic Science and Engineering, USA), National Academy of Science #INT-0002341 (2001-2002 гг.);

7. Микроструктурные аспекты прочности и разрушения высокотемпературных сверхпроводников (РФФИ N 02-01-07028-ано, 2002-2003 гг.).

8. Исследование структурных превращений и процессов формирования дефектов при изготовлении и нагружении высокотемпературных сверхпроводников (РФФИ N 04-01-96800-р2004юг-а, 2004-2005 гг.).

загрузка...