Delist.ru

Теоретические основы менеджмента техногенного риска (07.09.2007)

Автор: Белов Петр Григорьевич

При этом возможность воспламенения или взрыва образовавшихся на ОПО топливовоздушных смесей и параметры вызванных этим поражающих факторов предлагалось оценивать с применением известной классификации горючих веществ и заполняемых ими объемов пространства, т.е. как это предписано новейшими официальными методиками. Расчет Pr рекомендовано проводить по приведенным там соотношениям и коэффициентам, а исходными данными для DP должны служить результаты моделирования предыдущих этапов.

2.3. МЕТОДОЛОГИЯ ПРОГРАММНО-ЦЕЛЕВОГО РЕГУЛИРОВАНИЯ ТЕХНОГЕНОГО РИСКА

2.3.1. Сущность программно-целевого регулирования техногенного риска администрацией ОПО сводится к разработке целевых программ и созданию системы оперативного управления их выполнением. Каждая целевая программа представляет комплекс взаимосвязанных мероприятий, позволяющих реализовать поставленную перед системой МТР цель, например, – обеспечить надежность технологического оборудования ХТУ. Предназначение системы оперативного управления состоит в создании условий, максимально способствующих выполнению подобных программ, путем оценки реального состояния компонента ЧМС, разработки и реализация при необходимости корректирующих воздействий.

Практическая реализация ПЦРТР на ОПО предполагает решение четырех задач: а) обоснование, б) обеспечение, в) контроль, г) поддержание приемлемого (по выбранным критериям) техногенного риска. Их внедрение в систему МТР предложено осуществлять в соответствии с рекомендациями математической теории организации, интерпретирующей функционирование администрации ОПО процессом преобразования вектора входных воздействий Х в выходные Y с результативностью ( и издержками ресурса Т. В составе такой организации имеются эргатический (персонал Н) и технический (машина M) компоненты, обозначенные на рис. 2.11 соответственно заглавными буквами латинского алфавита и римскими цифрами.

Рис. 2.11. Модель системы МТР

Качество работы администрации конкретных ОПО будет характеризоваться определенной результативностью Е{(( и издержками Т функционирования, а случайный характер данного процесса – учетом того, что входные воздействия xk поступают с вероятностями Р(хk), а выходные yl – с условными P(yl/хk), что позволяет прогнозировать значения выбранных здесь показателей системы МТР:

(2.17)

и оптимизировать их значения. Например, – создавать структуры, преобразующие заданные входные воздействия xk с максимальной результативностью Е{(( или минимальными издержками Т. Естественно, что параметрами (kl, Р(yl/xk), tkl этих задач будут свойства Ч и М.

2.3.2. Обоснование приемлемого техногенного риска. Рекомендуемым для МТР способом обоснования приемлемой меры возможности техногенных происшествий на ОПО принята ее оптимизация по критерию «минимум суммарных социально-экономических издержек» (затрат S, необходимых для предупреждения происшествий, и ущерба Y от них в случае возникновения). Оптимизируемыми параметрами вначале были частота I их непоявления и коэффициент социальной приемлемости ae=(1-I()/(12-I(), зависящий от ее оптимального значения I(, а затем – вероятность Q(() возникновения на ОПО происшествий конкретного типа.

Зависимость составляющих S(I), Y(I,), S(ae), Y(ae) и суммы R=(S+Y) издержек от первых двух оптимизируемых параметров показана на рис.2.12, в предположении о нелинейности и монотонности их изменения. Так как для всех значений параметров I и ae соблюдались условия: Y'(I)<0, а S((I), S(((I), Y(((I), R"(I) и R"(ae)(О, то значения I( и ae(, соответствующие минимумам суммы R, могут рекомендованы для нормирования техногенного риска ОПО. Действительно, оптимальная частота I( непоявления происшествий учитывает интересы его администрации, а коэффициент ae( – всей химической отрасли или общества в целом. Ведь стремление ae к нулю проявится в повышении R(ae) за счет превалирующего роста Y(ae), a по мере приближения значения данного коэффициента к другой границе ae=1; это же самое будет иметь место, но на сей раз – по причине более интенсивного роста S(ae).

Рис. 2.12. Графики зависимостей Y(I), S(I), R(I) и Y(ae), S(ae), R(ae)

Изложенный подход конкретизирован заменой частоты I вероятностью Q(() возникновения конкретных происшествий и следующей аналитической аппроксимацией издержек:

S[Q(()]=S0+[(S(Q)/(Q](Q = S0+C(1-Q)/Q; Y[Q(()] = Y Q, (2.18)

где S0 – доля затрат, необходимых для создания системы МТР; (S(Q)/(Q и (Q – интенсивность требуемого приращения затрат по мере снижения вероятности Q и размеры ее уменьшения; С – параметр, пропорциональный расходам на понижение риска появления происшествий на один процент; Y – средний ущерб от возможного в конкретных ХТУ происшествия, величина которого принята независимой от вероятности возникновения.

С учетом принятых допущений, упрощенный вариант постановки и решения задачи по обоснованию приемлемых параметров техногенного риска может иметь следующий вид:

(2.19)

В предположении о неизменности C и Y на отдельных этапах развития химических технологий, их рекомендовано оценивать по аналогам: из (2.18) и как среднее арифметическое:

(2.20)

где M([S],Q(() – статистические оценки средних (без учета S0) затрат на снижение риска аналогичных ХТУ и вероятности появления там происшествий; l, Yj – количество их возможных типов (авария, катастрофа...) и средний социально-экономический ущерб от каждого из них.

Анализ решения (2.19) свидетельствует о необходимости дифференцированного подхода к нормированию техногенного риска, что пока игнорируется на производстве и транспорте. Работоспособность же предложенного подхода подтверждена на примере крановой перегрузки емкостей с АХОВ бригадой из двух человек. При отнесенных к семилетнему периоду статистических оценках: C=40 и Y=660 человеко-дней, оказалось, что Q((()=0,246. В работе также даны подходы к структурированию издержек R(Q) и оценке стоимости одного человеко-дня, что необходимо для решению уже рассмотренной и других задач ПЦРТР.

2.3.3. Обеспечение приемлемого риска при разработке ХТУ и процессов. Системное обеспечение приемлемого для администрации ОПО техногенного риска предложено осуществлять решением задач: а) создание "безопасного" технологического оборудования, б) подбор и подготовка эксплуатирующего его персонала, в) обеспечение их "комфортными" условиями среды и г) оснащение рабочих мест ОПО необходимыми средствами защиты.

2.3.За. Обеспечение "безопасности" создаваемого оборудования. Содержание ключевых мероприятий и наиболее рациональная последовательность их реализации изображена на рис. 2.13 в виде алгоритмической модели соответствующей целевой программы, выполняемой на этапах: 1) технического проектирования отдельных агрегатов, 2) их изготовления и заводских испытаний, 3) окончательной отработки и контроля качества на головном объекте. Основная идея при этом состоит в обеспечении надежности и эргономичности техники с учетом возможных ошибок персонала и неблагоприятных внешних воздействий.

Рис. 2.13. Модель программы обеспечения "безопасности" создаваемого оборудования

Отметим пять моментов предложенной программы: всесторонность исследования опасных факторов (см. блоки 2, 18 и 27 модели), системность учета предпосылок к происшествиям (блоки 3, 15, 16 и 23), необходимость количественной оценки риска (блоки 10, 20 и 28), регламентация очередности устранения выявленных недостатков (блоки 5-7, 13-17 и 23-26) и точное определение смены этапов создания техники (блоки 10, 20 и 28).

В работе также приведены рекомендации по классификации ошибок персонала и отказов оборудования, обстоятельств их возникновения, способов выявления и предупреждения конструктивно-технологическими средствами, планомерное использование которых позволит в последующем уменьшить число предпосылок по вине технологического оборудования.

2.3.36. Организация профотбора и обучения персонала ОПО. При обосновании методов совершенствования профотбора, многократно снижающего число предпосылок к происшествиям, функции человека-оператора делились на кибернетические и метаболические. Это позволило свести задачу профотбора к выявлению у кандидатов тех, заданных профессиограммами параметров P(yl|xk), (kl и tkl, которые удовлетворяют условию:

(2.21)

– максимально возможная результативность работы создаваемой ХТУ (ЧМС).

При этом учитываемые в (2.21) обобщенные психофизиологические характеристики персонала – память, зрение, сила, выносливость, ловкость... и предъявляемые к ним требования интерпретировались лингвистическими переменными, а их оценка проводилась на универсальных шкалах: а) результативности – (kl, б) вероятности – P(yl|xk) и в) продолжительности – tkl. Первая из них была показана на рис. 2.7, а две другие – в приводимой ниже таблице.

№ Балл Лингвистическое значение оценок переменной:

на шкале вероятности на шкале продолжительности

Совершенно невозможно Бесконечно долго

Практически невозможно Почти бесконечно долго

3. 2 Допустимо, но маловероятно Исключительно медленно

Только отдаленно возможно Очень медленно

5. 3 Необычно, но возможно Медленно

Неопределенно возможно Неопределенно быстро

7. 4 Практически возможно Быстро

Вполне возможно Очень быстро

9. 5 Наиболее возможно Исключительно быстро

загрузка...