Delist.ru

Теоретические основы менеджмента техногенного риска (07.09.2007)

Автор: Белов Петр Григорьевич

1.5. Апробация и реализация результатов. Основные положения диссертации прошли апробацию в Государственной научно-технической программе "Безопасность населения и народнохозяйственных объектов с учетом риска возникновения природных и техногенных катастроф", а также в публикациях и выступлениях на следующих научно-практических форумах:

Международные, всесоюзные и федеральные симпозиумы,

научно-практические конференции и семинары (школы-семинары):

1. "Проектирование, оценка и оптимизация функционирования систем "человек-техника" – г. Севастополь, ноябрь 1983, апрель 1984 и 1985, сентябрь 1988 и 1989 г. 2. "Эргономика и эффективность систем "человек-техника" – г. Игналина, Литовской ССР, июнь 1985 г. 3. "Эффективность, надежность и качество систем "человек-техника" – г. Тбилиси, сентябрь 1987 г. 4. "Автоматизация научных исследований, эргономического проектирования и испытаний человекомашинных систем" – г. Ленинград, ноябрь 1988 г. 5. "Применение ЭВМ в охране труда" – г. Херсон, сентябрь 1988 г. 6. "Охрана труда и производственной среды на предприятиях г. Москвы" – г. Москва, сентябрь 1992 г. 7. "Безопасность и риск: предупреждение индустриального риска" – г. Москва, апрель 1991 и сентябрь 1992 г. 8. "Экологическое образование и воспитание" – г. Москва, июнь 1998 г. 9. "АВИА-99" – Киев, октябрь 1999 г. 10. «Моделирование и анализ безопасности, риска и качества сложных систем» – Санкт-Петербург, июнь 2001 и июль 2002 г. 11. «Надежность и качество функционирования систем» – г. Москва, сентябрь 1994 и 1998 г., июнь 2000 г., октябрь 2005 г., январь 2007 г. 12. «Актуальные проблемы гражданской защиты» – г. Москва, апрель 2006 г. 13. «Металл оборудования ТЭС. Проблемы и перспективы» – г. Москва, октябрь 2006 г. 14. «Безопасность движения поездов» – г. Москва, октябрь 2006 г. 15. «Анализ и регулирование риска в теплоэнергетике» – г. Москва, декабрь 2006 г. 16. «Управление безопасностью сложных систем» – г. Москва, декабрь 2006 г. 17. «Техногенные катастрофы и проблемы безопасности» – г. Москва, апрель 2007 г. 18. «Образовательная область «Безопасность жизнедеятельности» – г. Москва, май 2007 г.

Координационные научно-методические советы,

научно-технические семинары, заседания постоянно-действующих рабочих групп и кафедр

1. Главное управление МО СССР – июнь 1986 г. 2. Головной НИИ МО СССР – май 1987 г. 3. Военная академия им. Ф.Э. Дзержинского – декабрь 1986, март и ноябрь 1987 г., февраль и март 1989, февраль 1990 г. 4. Московский институт народного хозяйства им. Г.В. Плеханова – июнь 1991 г. 5. Институт проблем безопасного развития атомной энергетики АН СССР – март, июль 1991 г. 6. Всесоюзный НИИ системных исследований АН СССР – май 1991 г. 7. Всесоюзный НИИ эксплуатации атомных электростанций – март 1991 г. 8. Верховный совет Российской федерации – март 1992 г. 9. Институт машиноведения АН СССР (РАН) – апрель 1991, февраль 1994, ноябрь 2005 г. 10. Институт атомной энергии им. И.В. Курчатова – май 1991 г. 11. Академия гражданской защиты МЧС РФ – апрель 1998 г. 12. Академия труда и социальных отношений ВЦСПС (АТиСО) – июнь 1991 и май 2000 г. 13. Московский инженерно-физический институт – февраль 1992 и ноябрь 1998 г. 14. Московский государственный технический университет им. Н.Э. Баумана – ноябрь 1993, ноябрь 1996, январь 1998, февраль и апрель 2001 г., май 2007 г. 15. Научно-технический центр «Промышленная безопасность» при Госгортехнадзоре Российской федерации – ноябрь 2003 г. 16. Политехнический музей – январь 1998 г. 17. Рабочая группа по риску и безопасности при Президенте РАН – июль 2000 г. 18. Российский химико-технологический университет им. Д.И. Менделеева – ноябрь 2003 г. 19. Государственная Дума и Совет Федерации Федерального собрания РФ – ноябрь 1996, сентябрь и ноябрь 2000, апрель и май 2001, июнь и октябрь 2002, май 2004 и январь 2005 г. 20. Центр стратегических исследований МЧС РФ – апрель 2002, ноябрь 2003, ноябрь 2004, октябрь 2005, апрель 2006 и 2007 г. 21. Всероссийский теплотехнический научно-исследовательский институт – март 2006 г. 22. Институт проблем управления РАН – декабрь 2006 г.

Полученные автором результаты по теме диссертации опубликованы в более 100 научных трудах, и реализованы при а) разработке «Методических указаний по проведению анализа риска ОПО» (РД 03-418-01), стандарта РАО ЕЭС «Тепловые электрические станции. Методика оценки состояния основного оборудования», «Методического руководства по оценке риска ООО «Уральская сталь», «Специальных технических условий проектирования «Анализ риска ОПО проекта Сахалин-II», «Методических рекомендаций по снижению и перераспределению социально-экономического ущерба от аварий и несчастных случаев на железнодорожном транспорте»; б) организации и обеспечении учебно-воспитательного процесса со студентами вузов, обучающимися по специальности «Безопасность жизнедеятельности в техносфере».

1.6. На защиту выносятся следующие основные положения диссертационной работы:

а) методологические основы МТР, включающие ЭЭК и классификацию объективно существующих опасностей, базовые принципы снижения обусловленного ими техногенного риска на ОПО, концепцию системы МТР на предприятиях химической и в смежных с ней отраслях промышленности: объект и структуру, цель и задачи, показатели и критерии оценки качества;

б) методология прогнозирования вероятности появления техногенных происшествий на ОПО, содержащая совокупность рекомендаций по а) моделированию процесса их возникновения с помощью ДПСС, б) системному (качественному и количественному) анализу данных графических моделей и соответствующих им – аналитических и алгоритмических, в) созданию основанных на них методик её априорной оценки и уточнению сфер их применимости;

в) методология прогнозирования техногенного ущерба от аварийных и иных выбросов энергии или вредного вещества ОПО, декомпозирующая соответствующий процесс на четыре типовых этапа (расконсервация, трансляция, трансформация, адсорбция их энергозапаса) и регламентирующая порядок априорной и апостериорной оценке учитываемых параметров;

г) методология программно-целевого регулирования техногенного риска, реализуемая администрацией ОПО в рамках соответствующего менеджмента: а) на этапах стратегического планирования и оперативного управления; б) путем обоснования, обеспечения, контроля и поддержания приемлемой для нее вероятности конкретных техногенных происшествий;

д) совокупность моделей и методов, предлагаемых для решения таких важных задач МТР на ОПО химической и смежных с нею отраслях промышленности, как идентификация источников техногенного риска, прогнозирование, нормирование и статистический контроль его параметров, оценка и оптимизация мероприятий по их поддержанию на приемлемом уровне.

1.7. Структура диссертации включает четыре части, введение, заключение и приложение. В первой части изложены методологические основы МТР; во второй и третьей – методы априорной и апостериорной оценки мер возможности и результата проявления техногенного риска в форме аварийных и иных вредных выбросов ОПО; в четвертой – методология программно-целевого регулирования показателей техногенного риска. В приложении приведены справочные данные и дано описание экспертной системы, решающей задачи МТР.

II. ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В диссертации изложены основы методологии и технологии прогнозирования и программно-целевого регулирования техногенного риска, базирующиеся на энергоэнтропийной концепции.

2.1. МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МЕНЕДЖМЕНТА ТЕХНОГЕННОГО РИСКА

2.1.1. Причины и факторы аварийности и травматизма. Главную опасность ОПО химической и смежных отраслей промышленности представляют аварийные и иные выбросы части обращающихся там запасов энергии и ВВ. При этом появление аварийных выбросов можно интерпретировать потоками случайных редких событий, вызванных причинной цепью предпосылок (ПЦП) – ошибками людей, отказами техники и/или нерасчетными внешними воздействиями. Способствующие им факторы – низкие надежность и эргономичность технологического оборудования ОПО, технологическая недисциплинированность и неверные действия их персонала в нестандартных ситуациях, некачественная организация труда и дискомфортность рабочей среды. К косвенным факторам относятся также отсутствие единой методологии предупреждения и снижения тяжести техногенных происшествий, обособленность работ по охране труда, обеспечению промышленной и экологической безопасности.

2.1.2. Энергоэнтропийная концепция и классификация объективно существующих опасностей. Решение проблемы потребовало уточнения представлений о природе аварийности и травматизма, позволяющих обосновать объект и методы соответствующей деятельности. Исходя из этого, в работе сформулирована ЭЭК, сущность которой состоит в следующем:

1. Эксплуатация ОПО потенциально опасна, так как связана с проведением технологических процессов, а последние – с энергопотреблением и использованием вредных или аварийно химически опасных веществ (АХОВ).

2. Опасность проявляется в результате несанкционированного или неуправляемого выхода энергии, накопленной в технологическом оборудовании, вредных веществах (ВВ), непосредственно в самих работающих или во внешней относительно людей и техники среде.

3. Внезапный выход накопленного на ОПО запаса энергии или ВВ может сопровождаться техногенными происшествиями с гибелью или травмированием людей, повреждениями оборудования и загрязнением окружающей природной среды.

4. Такие происшествия вызваны цепями предпосылок, приводящими к потере управления технологическим процессом, нежелательному выбросу используемых в нем энергии или ВВ, их воздействию на людей, оборудование и объекты окружающей среды.

5. Инициаторами и звеньями ПЦП являются ошибочные и несанкционированные действия людей, неисправности и отказы технологического оборудования, а также нерасчетные воздействия на них извне.

Правомерность ЭЭК обусловлена эмпирическим характером и непротиворечивостью ее утверждений законам природы, в частности – объективному стремлению энтропии систем к самопроизвольному росту, что следует из II начала термодинамики. Это касается не только производственной деятельности, связанной с противодействием такому росту, но и интеллектуальной, направленной на уменьшение энтропии (на сей раз – не в термодинамическом, а в информационном смысле), а потому и способной ухудшить состояние здоровья людей.

Основой для деления объективно существующих опасностей выбрана неадекватность свойств/параметров движущейся материи потребностям материального объекта, что позволило выявить следующие три базовых класса: 1) антропогенно-социальные, обусловленные случайным или умышленным искажением информации людьми; 2) природно-экологические, вызванные нарушением естественных циклов миграции вещества, в том числе и в результате стихийных бедствий; 2) техногенно-производственные, связанные с возможностью нежелательных выбросов энергии, накопленной в созданных людьми технологических объектах.

2.1.3. Базовые категории и принципы МТР. В соответствии с принятой концепцией, осуществление МТР предполагает а) субъект – администрацию ОПО, представляющую собой организацию (организационную систему), предназначенную для идентификации источников техногенного риска с целью прогнозирования и регулирования его параметров, б) объект – ХТУ, имеющиеся в составе ОПО и представляющие собой основные источники риска.

В общем случае и объект, и субъект МТР могут интерпретироваться системами "человек-машина-среда" (ЧМС), что обусловлено следующим: а) каждая такая система включает в себя источник опасности и потенциальную жертву; б) функционирование ЧМС есть эксплуатация персоналом администрации или ХТУ технологического оборудования ОПО в определенной рабочей среде (безлюдные и не использующие технику процессы – частный случай); в) в ЧМС содержатся носители всех типов предпосылок к происшествиям: человек – ошибок, машина – отказов, рабочая среда – неблагоприятных для них внешних воздействий.

Модель ЧМС (рис. 2.1) включает человека (Ч), машину (М), рабочую среду (С), взаимодействующих между собой по установленной технологии (Т). Их связи изображены стрелками: I(t) – входные воздействия, E(t) – выходные; а граница ЧМС – квадратом. Под "человеком" подразумевается персонал администрации или ХТУ; "машиной" – их технологическое оборудование; "рабочей средой" – пространство ОПО, в котором они функционируют; "технологией" – совокупность приемов, используемых для изменения предмета труда и включающих мероприятия по обеспечению его безопасности; внешней среды – то, что не входит в ЧМС, но может влиять на ее функционирование или изменяться из-за него.

В последующем используются также следующие рабочие определения: опасность –возможность (свойство) причинения ущерба; ущерб – мера, характеризующая нарушение целостности или утраты других полезных свойств объекта; риск – мера опасности, указывающая и на возможность причинения ущерба, и на его размеры; происшествие – событие, повлекшее за собой ущерб в результате резкого ухудшения свойств объекта.

Производственно-экологическая безопасность (ПЭБ) интерпретируется здесь свойством ОПО сохранять при функционировании состояния с высокой вероятностью исключения происшествий и приемлемым ущербом от непрерывных энергетических (тепло, шум...) и вредных материальных (сажа, шлаки...) выбросов. Менеджмент техногенного риска – осуществление совокупности действий по прогнозированию и регулированию его количественных параметров с целью удержания их значений в приемлемой для администрации ОПО области.

Следуя ЭЭК, можно утверждать о двух кардинальных принципах МТР на ОПО: 1) максимально возможное сокращение энергоемкости и токсичности всех ХТУ, 2) недопущение при их функционировании аварийных и иных нежелательных выбросов большого количества энергии и ВВ. Последнее достигается 3) исключением соответствующих предпосылок – а) отказов и неисправностей технологического оборудования ОПО, б) ошибочных и несанкционированных действий эксплуатирующего его персонала, в) нерасчетных для них внешних воздействий – и 4) недопущением образования ПЦП из отдельно взятых предпосылок. Тогда как снижение ущерба в случае появления таких выбросов требует еще одного принципа – 5) заблаговременной подготовки к ним с целью своевременной локализации опасных зон, проведения аварийно-спасательных и ремонтно-восстановительных работ. Приоритетность принципов совпадает с нумерацией, а объекты мероприятий МТР – с компонентами ЧМС (см. рис. 2.1): (а,б,в) – с изображенными на периферии модели, а 4 и 5 – с центральным.

2.1.4. Основные методы и модели МТР. Основным методом прогнозирования техногенного риска администрацией ОПО выбран системный анализ, а аппаратом – моделирование опасных процессов в используемых там ХТУ. Применение данного инструментария предполагает проблемно-ориентированное описание соответствующих объекта и цели, эмпирический системный анализ уже накопленных данных и теоретический – созданных моделей.

Основным методом регулирования техногенного риска администрацией ОПО принято программно-целевое планирование и управление соответствующим процессом, а аппаратом – математическая теория организации и исследование операций. Такой выбор аргументирован тем, что МТР требует не разовых мероприятий, а длительной, планомерной и целенаправленной работы; следовательно ПЦРТР – есть осуществление совокупности мероприятий по обоснованию, обеспечению, контролю и поддержанию приемлемого уровня ПЭБ на всех этапах жизненного цикла ХТУ, начиная с проектирования и кончая утилизацией оборудования. Практическая же реализация ПЦРТР предполагает: а) стратегическое планирование (обоснование приемлемых для администрации ОПО параметров техногенного риска и разработку целевых программ его обеспечения) и б) оперативное управление выполнением таких программ (своевременный контроль и поддержание приемлемых параметров техногенного риска).

2.1.5. Цель, задачи и показатели системы МТР. Принятая ЭЭК, а также выбранные методы прогнозирования и регулирования техногенного риска указали на необходимость в системе МТР, представляющей совокупность тех взаимосвязанных нормативных актов, организационно-технических мероприятий, а также соответствующих им (актам и мероприятиям) сил и средств, которые предназначены для снижения издержек от реально существующих на ОПО техногенно-производственных опасностей. Ее стратегической целью целесообразно принять а) минимизацию обусловленного ими ущерба людским, материальным и природным ресурсам, либо б) удержание величины подобного техногенного ущерба в заданных пределах.

Главными задачами системы МТР приняты: а) исключение гибели и других несчастных случаев с людьми; б) предупреждение аварий с выводом из строя ХТУ и другим материальным ущербом; в) недопущение загрязнения ВВ природной среды и уничтожения ими биоты; г) заблаговременная подготовка и эффективное ведение аварийно-спасательных работ на ОПО. Базовым показателем системы МТР выбрано математическое ожидание M([Y] величины социально-экономического ущерба от возможных в течение времени ( аварийных и иных вредных выбросов. Показателями безопасности эксплуатации конкретных ОПО служат Q(() – вероятность возникновения там хотя бы одного происшествия (катастрофа, авария, несчастный случай с людьми) за это время, а также M([Z] и M([S] – ожидаемые там средние задержки времени приостановки технологического процесса вследствие возможных происшествий и средние затраты на предупреждение и снижение их тяжести. В работе также используются среднее время (ср "наработки" на происшествие и параметр (пр потока таких событий.

При оценке эффективности мероприятий ПЦРТР на ОПО исходили из того, что самыми предпочтительными из них будут те, которые соответствуют: а) наибольшему (при выделенных затратах S) снижению величины ущерба – (M([Y] или вероятности (Q((), либо б) наименьшим затратам S, требуемым для снижения M([Y] или Q(() до приемлемого уровня.

2.2. МЕТОДОЛОГИЯ ПРОГНОЗИРОВАНИЯ ТЕХНОГЕННОГО РИСКА

Общая идея прогнозирования техногенного риска на ОПО проиллюстрирована на рис. 2.2.

загрузка...