Delist.ru

совершенствование технологии волочения (05.09.2007)

Автор: Трофимов Виктор Николаевич

Для достижения поставленной цели необходимо решение следующих задач:

Разработка критериев, позволяющих спроектировать маршрут многопереходного волочения и обеспечить требуемую длину заготовки.

Разработка критериев, позволяющих обеспечить требуемую дефектность структуры заготовки.

Исследование влияния физико-химических и теплофизических свойств пары трения волока-заготовка на разрушение и стойкость алмазных волок, используемых на финишных переходах.

Расчет параметров и разработка практических конструкций инструмента для улучшения условий трения при волочении.

Основные положения, выносимые на защиту:

Теоретическое обобщение критериев разрушения и накопления дефектов при пластической деформации и формирование обобщенного критериального подхода к проектированию процесса многопереходного волочения композиционных заготовок.

Математические модели расчета напряженного и деформированного состояния при волочении композиционной заготовки с произвольным числом слоев и соотношением их пластических характеристик.

Теоретические основы расчета коэффициента трения при волочении в смешанном режиме трения.

Теоретические основы расчета параметров сборного волочильного инструмента для волочения в режиме СРТ.

Научная новизна работы заключается в:

- разработке и теоретическом обосновании условия безобрывности процесса многопереходного волочения;

- разработке и теоретическом обосновании критерия поврежденности при пластической деформации;

- разработке технологического критерия поврежденности для проектирования процесса многопереходного волочения и прогнозировании уровня дефектности готовых изделий;

- разработке математической модели процесса волочения слоистых композиционных заготовок и анализе влияния основных параметров процесса волочения на величину напряжений в слоях композиционной заготовки;

- теоретическом обосновании методики расчета коэффициента трения при волочении в режиме смешанного трения;

- разработке теоретических основ расчета напорных характеристик волочильного инструмента при волочении в режиме СРТ.

Методы исследования основаны на использовании экспериментальных и теоретических результатов физики твердого тела, теории пластичности, линейной механики разрушения и теории разрушения при обработке металлов давлением, использовании методов математической физики и математической статистики.

Практическая значимость. Результатами исследований, готовыми к практическому использованию являются:

Методика расчета напряженного и деформированного состояния при волочении слоистых композиционных заготовок.

Методика проектирования маршрута многопереходного волочения композиционных заготовок с использованием технологического критерия поврежденности и условия устойчивости (безобрывности).

Методика расчета параметров сборного волочильного инструмента для деформирования заготовок в режиме смешанного трения.

Устройства для реализации режима смешанного трения при деформировании тонких проволок, новизна технических решений которых подтверждена авторскими свидетельствами, патентами и наградами 51-й Всемирной выставки инноваций, научных исследований и современных технологий «Эврика-2002» (Брюссель, ноябрь 2002г.), дипломом Урало-Сибирской научно-промышленной выставки (Екатеринбург, июнь 2003 г.).

Реализация работы. Полученные в работе результаты, разработанные способы и устройства проверены и использованы в условиях лаборатории кафедры «Динамика и прочность машин» Пермского государственного технического университета, ОАО «Камский кабельный завод» и ОАО «Чепецкий механический завод». Разработанные методики используются при проектировании технологии многопереходного волочения тонких биметаллических проволок в ОАО «Камкабель» (г. Пермь) и композиционных заготовок для сверхпроводников в ОАО «Чепецкий механический завод». Теоретические результаты работы используются в учебном процессе в форме лекций, УИРС, лабораторных работ и при выполнении дипломных и курсовых работ на кафедре «Динамика и прочность машин» Пермского государственного технического университета (ПГТУ) и «Специальные инженерные науки» Глазовского инженерно-экономического института (филиала) Ижевского государственного технического университета.

Личный вклад автора заключается в постановке, организации и проведении теоретических и экспериментальных исследований, изготовлении практических конструкций волочильного инструмента, обобщении полученных результатов.

Автор выражает благодарность заслуженному работнику высшей школы РФ, заведующему кафедрой «Динамика и прочность машин» Пермского государственного технического университета профессору, д.т.н. Колмогорову Герману Леонидовичу за научную и организационную помощь.

Апробация работы. Основные результаты работы докладывались на:

Научно-технической конференции «Современные вопросы динамики и прочности машин» (Пермь, ППИ: 1986); Научно-технической конференции «Математическое моделирование технологических процессов обработки металлов давлением» (Пермь, 1987); Научно-технической конференции «Совершенствование технологических процессов кабельного производства» (Пермь, 1988); V Всесоюзной конференции «Получение и обработка материалов высоким давлением. (Минск: 1987); VII Всесоюзной конференции «Теплофизика обработки металлов давлением». (Тольятти, 1988); Научно-технической конференции «Прогнозирование и управление качеством металлоизделий, получаемых обработкой давлением» (Абакан, 1988); научно-техническом семинаре «Новые технологии производства слоистых металлов, перспективы расширения их ассортимента и применения» (Магнитогорск, 1989); Республиканском семинаре «Технология и оборудование технологического производства» (Алма-Ата, 1989); конференции «Эффективные технологические смазки, улучшающие качество изделий при волочении» (Киев, 1990); ХXXI научно-технической конференции ИжГТУ (Ижевск, 1998); XII Зимней школе по механике сплошных сред. (Пермь, ИМСС УрО РАН, 1999); VI Международной конференции «Комплексное обеспечение качества транспортных и технологических машин» (Пенза, 2000); Международной научно-технической «Информационные технологии в инновационных проектах» (Ижевск, ИжГТУ, 2000); Всероссийской научно-практической конференции «Защитные покрытия в машиностроении и приборостроении» (Пенза, 2001); Международной научно-технической конференции «Комплексное обеспечение показателей качества транспортных и технологических машин», (Пенза, 2001); VIII Всероссийском съезде по теоретической и прикладной механике (Пермь, 2001); Научно-технической конференции посвященной 50-летию Ижевского государственного технического университета. (Ижевск, ИжГТУ, 2002); 7-й Всероссийской научно - технической конференции «Аэро- космическая техника и высокие технологии (12-14 апреля 2004, Пермь); Международном форуме «Информационные технологии в инновационных проектах» (Ижевск, ИжГТУ, 2004); 7-й Всероссийской научно - технической конференции «Аэро- космическая техника и высокие технологии» (Пермь, 2004); XIV Зимней школе по механике сплошных сред (Пермь, ИМСС УрО РАН, 2005); XVII Российской научно-технической конференции «Неразрушающий контроль и диагностика» (Екатеринбург: ИМАШ УрО РАН, 2005); Научно-технической конференции «Современные технологии в машиностроении и автомобилестроении» (Ижевск, ИжГТУ, 2005); III Российской научно-технической конференции «Неразрушающий контроль и диагностика» (Екатеринбург: ИМАШ УрО РАН, 2007); семинаре кафедры «Машины и технологии обработки металлов давлением» Ижевского государственного технического университета; семинаре ЦНИЛ ОАО «Чепецкий механический завод» (г. Глазов).

Публикации. По материалам выполненных исследований опубликовано 43 работы, получено 4 авторских свидетельства, 3 награды международных и российских выставок.

Структура и объем диссертации. Диссертация состоит из введения, 6 глав, заключения, списка литературы из 243 наименований, приложений. Основная часть работы изложена на 267 страницах машинописного текста, содержит 113 рисунков, 40 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность рассматриваемой научно-технической проблемы, определена цель работы, научная новизна и практическая ценность работы, приведены данные о публикациях и структуре работы.

В первой главе описаны основы теории сверхпроводимости, рассмотрены особенности конструкции и технологии изготовления слоистых композиционных длинномерных изделий для электротехники, рассмотрено современное состояние технологии волочения с использованием алмазного волочильного инструмента.

Наиболее широко применяются би- и триметаллические электропроводники круглого сечения, включающие сердечник и одну или две оболочки.

, определяемые структурным состоянием используемого металла или сплава, которое зависит от термомеханической обработки композиционной заготовки.

Рис.1. Схематизация конструкций сверхпроводников в виде би- и триметалла:

1 – оболочка; 2 – промежуточный слой; 3 – сердечник; R – радиус проводника;

Rc1 – наружный радиус промежуточного слоя; Rc2 – радиус сердечника

Сечение композиционной заготовки для СМС может быть представлено как би- или триметалл, промежуточный слой или сердечник которого являются композитом, состоящим из сверхпроводящих волокон на основе сплавов NbTi или соединений Nb (~101-104 шт.) размещенных в медной матрице или в матрице из высокооловянистой бронзы (рис.1).

Технология изготовления проводников для СМС заключается в многократном повторении процессов сборки, прессования, волочения и отжига композита.

загрузка...