Delist.ru

Специфические взаимодействия и особенности реологических свойств силоксанов (01.10.2007)

Автор: Васильев Виктор Георгиевич

Реологические свойства ПДМС иономеров с концевыми ионными группами.

Карбоксилсодержащие телехелевые полидиметилсилоксаны (ТХС) (II) представляют собой ньютоновские жидкости, вязкость которых, как видно из рис. 3 (кривая 1), возрастает с увеличением их Мn. Введение в ТХС ионов металла, в частности цинка, приводит к значительному росту вязкости материала (рис. 3,

(II)

кривая 2), особенно сильному при низких значениях Мn, причем с ростом Мn вязкость иономеров уменьшается. Для иономеров, содержащих ионы Li+, зависимость имеет аналогичный характер. Наиболее значительное возрастание вязкости (на 9 десятичных порядков) наблюдается для образцов с наименьшей Мn. Из рисунка видно также, что при Мn = 2,2*104, вязкость карбоксилсодержащего ТХС практически не отличается от вязкости иономеров той же Мn, а при Мn = 7,5 *104 вязкость иономера становится даже меньше, чем вязкость исходного карбоксилсодержащего образца. Очевидно, что в ТХС иономерах при высоких Мn ионные группы уже не оказывают влияния на реологические свойства иономера.

В никельсодержащих иономерах течение удалось реализовать только для иономеров с n ? 120 (Мn ( 9 *103), т.к. никельсодержащие иономеры на основе

Рис.3. Зависимость вязкости

ТХС (1) и Zn-ТХС (2) от Мn. Рис.4. Зависимость вязкости ТХС-Zn (Мn = 9*103) от степени нейтрализации СООН групп.

низкомолекулярных ТХС вообще не способны к течению, что указывает на более сильное межмолекулярное взаимодействие за счет образующихся координационных связей.

Степень нейтрализации карбоксильных групп, не менее чем Мn, оказывает влияние на реологические свойства ТХС. Как видно из рис. 4 вязкость цинксодержащих иономеров увеличивается по мере роста степени нейтрализации почти на 6 десятичных порядков.

Реологические свойства статистических иономеров в блоке.

На рис. 5 представлена зависимость G' ПДМС-К/0.45-Ni от степени нейтрализации СООН групп. Видно, что даже при очень малом содержании ионов никеля (1 моль Ni2+ на 16 молей СООН) G' возрастает на 2 порядка. При дальнейшем увеличении содержания Ni2+ G' изменяется в пределах одного порядка. Аналогично ведут себя и цинксодержащие иономеры.

Помимо увеличения модуля упругости и вязкости, наличие в ПДКС ионных групп влияет и на характер течения полимера. На рис. 6 приведены кривые течения цинк- и никельсодержащих иономеров. Видно, что рост вязкости с увеличением напряжения сдвига (т.е. дилатансия или shear thickening) наблюдается для цинк и никельсодержащих иономеров на основе ПДМС-К с содержанием СООН групп 2 мол.%. (кривые 1, 2). В иономере с меньшим содержанием ионов, явление дилатансии отсутствует (кривая 3).

В условиях динамического режима деформирования иономеров при частотах, когда время жизни узлов становится больше времени воздействия,

Рис.5. Зависимость G’ ( ?=1рад/сек) ПДМС-К/0.45-Ni от количества нейтрализованных СООН групп. Рис.6. Кривые течения ПДМС-К/2-Ni (1), ПДМС- К/2-Zn (2) и ПДМС-К/0.8-Ni (3).

иономеры проявляют свойства пространственно сшитого эластомера. На рис. 7 представлены зависимости G' и G'' от ? при 25(С для ПДМС-К/0.8-Ni c различным мольным соотношением Ni2+ : COOH. Видно, что с увеличением ?

Рис. 7. Частотная зависимость G’ (1, 2) и G” (1’,2’) ПДМС-К/0.8-Ni c мольным соотношением Ni2+: COOH = 0.0625 (1, 1’) и 1.0 (2,2’).

материал переходит из вязкотекучего состояния (G'' > G') в высокоэластическое (G' > G''), причем, чем больше содержание ионных групп, тем при более низкой ? происходит этот переход. Так, для полностью нейтрализованного образца ПДМС-К/0.8-Ni (кривые 2 и 2’) G' > G" во всей исследованной области частот, что свидетельствует о наличии в нем достаточного количества физических узлов.

При повышении температуры процесс течения силоксановых статистических иономеров сопровождается рядом эффектов, не наблюдаемых при течении карбоцепных иономеров. На рис. 8 представлены кривые течения ПДМС-К/2-Ni при различных температурах. Видно, что наблюдается четко выраженная тенденция к смещению кривых течения с ростом температуры в область более высоких значений вязкости. При всех температурах наблюдается явление дилатансии, причем чем выше температура, тем при более низких напряжениях сдвига начинается рост вязкости. При температурах выше 80(С в иономерах, содержащих 2 мол.% металла, не удается добиться стационарного режима течения, вследствие непрекращающегося роста

Рис. 8. Кривые течения образцов ПДМС-К/2-Ni при 25 (1), 40 (2), 60 (3) и 80оС (4). Рис.9. Изменение во времени вязкости ПДМС-К/3-Zn (1-3) и ПДМС - К/2-Ni (4,5) при 90 (1), 120 (2,4) и 160оС (3,5).

вязкости во времени. Так на рис. 9 видно, что для Zn- содержащих иономеров при 90 и 120(С (кривые 1 и 2) стационарное значение (эф достигается за 1-2 часа. При 160(С происходит постепенный рост вязкости во времени, продолжающейся несколько часов. При течении Ni-содержащего иономера уже при 120(С (кривая 4) не удается зафиксировать стационарное значение вязкости.. В конце концов, постепенный рост вязкости при 160(С через 7 часов приводит к полному прекращению течения. Образовавшиеся при 160(С экструдаты, после охлаждения до комнатной температуры сохраняют свою форму и не растекаются под собственным весом, т.е. проявляют свойства пространственно сшитых полимеров. В иономерах, содержащих меньшее количество ионных групп, роста вязкости при высоких температурах не наблюдается, а стационарное течение достигается гораздо быстрее.

Таким образом, в процессе нагрева в иономерах происходит формирование прочной и термостабильной пространственной сетчатой структуры, которое более резко выражено в Ni-содержащих иономерах.

Реологические свойства растворов силоксановых иономеров.

Растворы телехелевых иономеров.

Реологические свойства растворов Li-, Zn- и Ni- ТХС изучены как в неполярном растворителе - м-ксилоле, так и в смеси м-ксилола с полярным растворителем –

Рис.10. Изменение во времени вязкости растворов Li-ТХС/1 (1) , Zn-ТХС/1 (2) и Ni-ТХС/1 (3) концентрации 3 об.% в м-ксилоле.

этанолом. Следует отметить, что, Li-, и Zn- ТХС иономеры с n=10, ограниченно растворяются в неполярных растворителях. Ni-ТХС/8 и Ni-ТХС/4, цепи которых состоят из 10 и 30 силоксановых звеньев, вообще не растворяются ни в неполярных, ни в полярных растворителях. Очевидно, что в ТХС иономерах с малой длиной силоксановой цепи (большим содержанием ионных групп) неполярный растворитель действует как пластификатор. Только ТХС иономеры с достаточно длинной цепью (n=120), могут растворяться в неполярных растворителях, независимо от типа ионов металла.

На рис. 10 показано изменение вязкости растворов Li-, Zn- и Ni-ТХС/1 в м-ксилоле во времени. В зависимости от типа ионов металла реологическое поведение растворов резко отличается. Вязкость растворов Zn-ТХС/1 не изменяется во времени. В растворах Ni-ТХС после приготовления растворов наблюдается снижение вязкости. В растворе Li-ТХС/1 вязкость сразу же после растворения начинает возрастать, и через несколько суток образуется гель. Добавление к неполярному растворителю м-ксилолу небольшого количества (10 об. %) полярного растворителя - этанола, способствует неограниченному растворению ТХС с низкими Мn.

Растворы ТХС иономеров в смешанном растворителе представляют собой неньютоновские псевдопластические жидкости. В неполярном растворителе растворы ТХС иономеров в определенных условиях ведут себя как дилатантные жидкости.

Растворы статистических иономеров.

Введение в ПДМС-К ионов двухвалентных металлов приводит к способствует возрастанию межмолекулярного взаимодействия в этих иономерах, и они становятся растворимыми только в смеси полярного и неполярного растворителей. При течении растворов ПДМС-К в неполярном растворителе при

Рис.11. Кривые течения ПДМС-К/2-Ni (1) и его 80% (2) и 60% (3) растворов в м-ксилоле.

определенных концентрациях иономера наблюдается явление образованию способных к течению и растворимых материалов. Иономеры на основе ПДМС-К с низким содержанием СООН групп (0.45-1 мол. %) растворяются в неполярных растворителях. Увеличение содержания ионных групп до 2 мол.% дилатансии. В ПДМС-К/0,45-Ni иономерах дилатантное поведение наблюдается в области концентраций 40-60% и достаточно больших напряжениях сдвига. При больших и меньших концентрациях растворы иономера проявляют псевдопластическое поведение. На рис. 11 представлены кривые течения ПДМС-К/2-Ni в блоке и в растворе. Видно, что в 60 и 80% растворах вязкость начинает возрастать при меньших напряжениях по сравнению с блочным образцом, что свидетельствует о достаточно сильном межмолекулярном взаимодействии, реализующемся в растворах силоксановых иономеров в неполярном растворителе. Результаты исследования иономеров в блоке также свидетельствуют о высоком уровне структурной организации происходящей в них как под воздействием температуры, так и при приложении сдвигового напряжения. Следовательно, меняя условия формирования сетчатой структуры, можно получать как термообратимые, так и термонеобратимые материалы.

Механические свойства иономеров при одноосном растяжении.

Механические свойства пленок силоксановых иономеров были исследованы только на примере иономеров с боковыми ионными группами. ТХС иономеры не образуют пленок. Исследовали растяжение пленок трех типов: полученных из раствора, прессованием при комнатной и при повышенной температурах. Различный способ получения пленок предполагал возможность реализации в них узлов разного типа.

На рис. 12 приведены кривые растяжения цинк- и никельсодержащих пленок, сформированных при комнатной температуре. Видно, что способ

Рис. 12. Кривые растяжения пленок ПДМС-К/2-Ni (1,2) и ПДМС-К/2-Zn (3,4), полученных из раствора (1,3) и прессованием (2,4). Рис. 13. Кривые растяжения пленок ПДМС-К/2-Zn, полученных прессованием при 25 (1), 140 (2) и 180ОС (3) и испытанных при 25 ОС.

получения пленок особенно сильно влияет на их механические свойства в случае цинксодержащего иономера. Кривая растяжения ПДМС-К/2-Zn, полученного прессованием (кривая 4), характеризуется наличием протяженного, практически горизонтального участка, отвечающего развитию необратимой пластической деформации. Это означает, что в пленках, полученных прессованием иономеров при комнатной температуре стабильные межмолекулярные узлы почти не образуются. Напротив, формирование пленок из раствора (кривые 1 и 3) способствует образованию определенного числа стабильных узлов. Это проявляется в развитии уже больших обратимых деформаций, увеличении разрывного напряжения и уменьшении разрывной деформации. Отметим также, что при любом способе получения разрывная деформация цинксодержащих полимеров всегда больше, чем никельсодержащих.

Существенное влияние на механические свойства пленок оказывает температура, при которой происходило формирование образцов. На рис.13 представлены кривые растяжения пленок ПДМС-К/2-Zn, полученных прессованием при различных температурах. Видно, что увеличение температуры прессования способствует возрастанию разрывного напряжения и уменьшению разрывной деформации.

Структурные аспекты.

Реологические и механические свойства силоксановых иономеров указывают на различный характер и уровень структурирования этих систем, который, по-видимому, можно отнести к существованию в них различных внутри- и межмолекулярных связей, способных к реорганизации с изменением температуры.

загрузка...