Delist.ru

Специфические взаимодействия и особенности реологических свойств силоксанов (01.10.2007)

Автор: Васильев Виктор Георгиевич

4. Показано, что образование сетчатой структуры в силоксановых карбоксилсодержащих полимерах и иономерах в значительной степени обусловлено перераспределением внутримолекулярных связей различной природы в межмолекулярные при повышенных температурах.

5. На примере полидиэтилсилоксана прослежен характер изменения реологических свойств в различных фазовых состояниях - кристаллическом, мезоморфном и изотропном. Показано, что характер реологического поведения силоксанов, представляющих собою кондис-кристаллы, имеет ряд общих черт с реологическими свойствами других полимеров, находящимися в аналогичном фазовом состоянии. Впервые исследован процесс течения полигексилфенилсилоксана и полидиэтилсилоксана, находящихся в мезоморфном состоянии (колончатой мезофазе). Показано, что пластическое течение колончатых мезофаз может быть описано в рамках традиционного реологического подхода к вязкому течению расплавов полимеров.

6. Изучены основные закономерности течения циклосилоксанов, как с различными триорганилсилокси группами, так и размером цикла. Установлено, что увеличение объема триорганилсилокси групп приводит не только к расширению температурной области существования мезофазы, но и к различному характеру зависимости между приложенным напряжением сдвига и скоростью деформации.

7. Впервые установлены основные закономерности течения пластических кристаллов на примере целой серии стереорегулярных циклосилоксанов, отличающихся как строением бокового обрамления, так и размером цикла. Показано влияние условий деформирования в пластической мезофазе на тип кристаллической структуры. Установлено, что предыстория формирования кристаллической структуры влияет на реологическое поведение пластических кристаллов. Изучены реологические свойства органоциклосилоксанов с различным размером цикла. На примере циклогексасилоксанов изучен механизм течения пластических мезофаз 2D и 3D типа. Исследованы особенности реологического поведения этого материала в различных мезофазах, а также в переходной области из одной мезофазы в другую.

8. Развит новый способ получения монокристаллов больших размеров, заключающийся в кристаллизации экструдата, находящегося в пластической мезофазе, в процессе капиллярного течения материала. Новый способ получения монокристаллов путем экструзии позволяет формировать, в зависимости от геометрии капилляра, монокристалл любой формы.

9. На основании установленных закономерностей реологического поведения силоксанов различных классов, определяющих специфику их деформирования, предложены подходы к управлению процессом их структурообразования с целью получения материалов с необходимыми физико-механическими характеристиками.

Практическая значимость работы.

Установленные в работе закономерности течения и структурообразования в силоксанах с различным уровнем межмолекулярного взаимодействия представляют интерес в практическом аспекте. В частности, карбоксилсодержащие ПДМС за счет перераспределения водородных связей, происходящего при повышенных температурах, образуют «физические вулканизаты», не уступающие по своим физико-механическим характеристикам, химически сшитым ПДМС, полученным традиционными способами пероксидной и радиационной вулканизации, а также сшиванием по концевым винильным или гидроксильным группам. Полученный впервые на основе карбоксилсодержащего ПДМС «физический вулканизат» обладает некоторыми специфическими свойствами, отличными от химически сшитых сеток. Разработка способа получения обратимых силоксановых сеток с регулируемыми свойствами и временем жизни открывает возможности создания новой технологии получения клеев, герметиков, покрытий и других эластомерных изделий.

Обнаруженное структурообразование силоксановых иономеров в процессе течения через капилляр при температурах выше 140оС, может быть использовано для получения как бесцветных, так и окрашенных прозрачных волокон. Высокая пластичность достаточно термостойкого ПДЭС в мезоморфном состоянии может быть использована для оптимизации переработки и улучшения эксплуатационных свойств различных полимерных композиций.

Установленные закономерности формирования монокристаллов из пластической мезофазы открыли перспективы целенаправленного получения достаточно протяженных монокристаллов с различной сингонией и геометрической формой. Проведенное исследование реологических и теплофизических свойств пластических кристаллов и их смесей актуально в плане их использования в качестве материалов с регулируемой пластичностью и возможного применения подобных композиций в качестве покрытий, аккумулирующих тепловую энергию, а также электропроводящих материалов.

Апробация работы. Результаты по теме диссертации получены в ходе выполнения исследовательских работ по грантам РФФИ 94-03-09456, 95-03-09565, 04-03-32853, 07-03-00970. Материалы диссертации докладывались и обсуждались на: VII Всесоюзной конференции по химии, технологии производства и практическому применению кремнийорганических соединений (Тбилиси -1990); 10 Polymer Networks group meeting and IUPAC 10th international symposium on polymer networks (Ierusalem, 1990); XVI, XVII, XXI, XXII, XXIII симпозиумах по реологии (Днепропетровск - 1992, Саратов – 1994, Осташков – 2002, Валдай – 2004, Валдай – 2006); 11th Meeting of the polymer networks group. Networks-92 (San-Diego–1992); Всероссийской научно-технической конференции. Наукоемкие химические технологии (Москва – 1993); Международной конференции по каучуку и резине (Москва – 1994); 12th Polymer networks group Conference. Polymer Networks-94 ( Prague - 1994); International Conference Nano-Structures and self-assemblies in Polymer Systems. (Saint-Petersburg – Moscow 1995); 2nd International Symposium Molecular order and mobility in polymer systems (Saint-Petersburg – 1996); Второй всероссийский каргинский симпозиум. «Химия и физика полимеров в начале XXI века» (Черноголовка – 2000); XI,XIII и XIV Всероссийской конференции «Структура и динамика молекулярных систем» (Яльчик – 2004, 2006 и 2007); Научном семинаре «Актуальные проблемы реологии» (Барнаул.- 2003); . International Conference Dedicated to 50 th Anniversary of A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (Москва – 2004); III и IV Международной научной конференции «Кинетика и механизм кристаллизации» (Иваново – 2004 и 2006); Х всероссийской конференции «Кремнийорганические соединения: синтез, свойства, применение» (Москва - 2005); International Conference “From molecules towards materials” IV Razuvaev Lectures (Nizhny Novgorod – 2005); 14th International Symposium on Organosilicon Chemistry. ISOSXIV. 3rd European Organosilicon Days (Wurzburg, Germany – 2005); XII Национальной конференция по росту кристаллов (Москва – 2006); Первой международной конференции «Деформация и разрушение материалов» (Москва – 2006); Конференции молодых ученых «Реология и физико-химическая механика гетерофазных систем» (Карачарово-2007); VI Всероссийской конференции молодых ученых «Проблемы механики; Теория, эксперимент и новые технологии.» (Новосибирск – 2007); IV межвузовской конференции молодых ученых (Санкт-Петербург – 2007).

Публикации. По теме диссертации опубликовано 47 работ, список которых приведен в конце автореферата.

Структура и объем диссертации. Диссертационная работа состоит из введения, 6 глав, заключения, списка литературы и иллюстраций. Диссертация изложена на 312 страницах, содержит 139 рисунков, 10 таблиц и список литературы, включающий 315 источников.

Диссертация построена следующим образом. Во введении обосновывается актуальность проблемы и формулируется цель работы. В первой главе проведен анализ литературных данных по реологическим свойствам полимеров с углеводородной основной цепью, имеющих боковые или концевые группы, образующие между собой водородные связи. Во второй главе представлены результаты исследований реологических свойств и особенностей структурообразования карбоксилсодержащих ПДМС. Третья глава - обзор литературных данных, касающихся реологических и механических свойств иономеров. В четвертой главе приведены экспериментальные результаты исследования реологических и механических свойств статистических и телехелевых силоксановых иономеров в растворе и блоке. В пятой главе сопоставлены литературные данные и результаты собственных экспериментальных исследований механических и реологических свойств мезоморфных силоксанов, образующих колончатые мезофазы и пластические кристаллы. В шестой главе приведены используемые в работе методики и характеристики используемых в работе материалов.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Глава 2

Реологические свойства полидиметилсилоксанов, содержащих боковые карбоксильные группы.

Одной из актуальных проблем реологии является изучение влияния на развитие необратимой деформации различного рода межмолекулярных взаимодействий, приводящих к ограничению подвижности полимерной цепи или ее сегментов. Крайними случаями проявления таких ограничений, возникающих выше температуры стеклования, являются наличие узлов сетки зацеплений, и ковалентная сетка в химически сшитых эластомерах. Пространственная сетчатая структура, образованная за счет ковалентных связей является термонеобратимой. Узлы такой сетки достаточно устойчивы к действию внешнего напряжения и развитие необратимой деформации в вулканизатах возможно только по механизму химического течения. Время жизни физических узлов, образованных либо за счет зацеплений, либо за счет ван-дер-ваальсовых взаимодействий чрезвычайно мало и существование таких узлов проявляется при очень коротких временах наблюдения. Гораздо более прочные и стабильные во времени узлы физической природы образуются в результате специфических взаимодействий между макромолекулами. Эти узлы могут в достаточно широком диапазоне изменять вязкие и упругие характеристики полимеров. В полиорганосилоксанах слабое межмолекулярное взаимодействие является причиной невысоких механических характеристик. Увеличение когезионной прочности полиорганосилоксанов при сохранении высокой гибкости их макромолекул за счет введения групп, способных к проявлению специфических взаимодействий, представляется одним из наиболее перспективных направлений оптимизации их свойств.

Исследование реологических свойств карбоксилсодержащих полидиметилсилоксанов (ПДМС-К)* (I), проводили на полимерах, содержащих различное количество карбоксильных групп.

При дальнейшем изложении полученных результатов ПДМС-К, содержащие А мол.% карбоксильных групп, обозначены как ПДМС-К/А, соответственно ПДМС-К/0.45 обозначает, что полимер содержит 0.45 мол.% карбоксильных групп.В диссертации показано, что специфические межмолекулярные взаимодействия в полидиметилсилоксанах, содержащих боковые карбоксильные группы (ПДМС-К) приводят к более высокой энергии активации ______________________________________________________________________

*Синтез карбоксилсодержащих силоксанов и иономеров на их основе был осуществлен к.х.н. О.И. Щеголихиной.

течения и сильно выраженному неньютоновскому характеру течения по сравнению с полидиметилсилоксанами близких молекулярных масс.

Характерной особенностью ПДМС-К, отличающей этот полимер от карбоксилатных каучуков с углеродной основной цепью, является его способность образовывать пространственную сетчатую структуру при повышенных температурах.

Уже при температурах выше 50(С начинается постепенное возрастание вязкости ПДМС-К. При температурах выше 80(С вязкость возрастает очень быстро, и течение становится невозможным вследствие образования пространственной сетки. Формирование сетчатой структуры происходят постепенно. На рис. 1 представлены зависимости модулей упругости G' и потерь G'' от круговой частоты ( при 90(С, соответствующие различным временам нагрева. В ходе структурообразования происходит переход системы от поведения характерного для упруговязкой жидкости (G'< G'') к поведению типичному для вязкоупругих систем (G' > G''). Образовавшаяся таким образом пространственная

Рис.1. Частотная зависимость G’(1-3) и G”(1’-3’) образцов ПДМС-К/1, выдержанных при 90( С в течение 4 (1,1' ), 8 (2,2’) и 20 (3,3’) часов.

сетка водородных связей достаточно устойчива к температурному воздействию. При повышении температуры до 140(С величина G' меняется незначительно. Лишь при температурах выше 160(С, вследствие диссоциации водородных связей, одновременно с уменьшением протяженности плато высокоэластичности начинает резко уменьшаться величина G' особенно заметно при низких ?. Специфическим свойством пространственной сетки ПДМС-К является ее обратимость. Сформировавшийся сетчатый полимер может быть вновь, без нагревания, переведен в исходное вязкотекучее состояние. Это происходит при взаимодействии с веществами, сольватирующими межмолекулярные водородные связи: спирты, вода, пиридин и т.п. При воздействии влаги воздуха этот процесс развивается длительно во времени. На рис.2 показано изменение во времени равновесного модуля упругости (G) образцов ПДМС-К/0.45, предварительно нагретых при различных температурах. Видно, что уменьшение G происходит в образцах, прогретых в любых условиях, причем время этого процесса тем больше, чем выше была температура предварительного нагрева. На рис. 2 сопоставлено также изменение G образцов ПДМС-К, находящихся в условиях атмосферной влажности и в сухой атмосфере. Как видно из рисунка, G образца, находящегося в эксикаторе над CaCl2, после небольшого падения, стабилизируется и остается постоянным в течение двух месяцев.

Рис.2. Изменение во времени равновесного модуля упругости при 25оС, ПДМС-К/0.45 нагретого до: 100 (1), 120 (2), 160 (3,5) и 200(С (4). Образцы хранились на воздухе (1-4) и в эксикаторе с CaCl2 (5).

Анализ реологических свойств ПДМС-К позволяет выделить четыре температурных интервала, характеризующихся различной степенью его структурной организации. Первый интервал – область температур до 50(С. Течение не осложняется процессом структурообразования, т.е. баланс внутри- и межмолекулярных связей смещен в сторону внутримолекулярных связей и сохраняется постоянным. В этом интервале рост температуры приводит к снижению вязкости.

Во втором интервале – (50 – 80(С) происходит увеличение числа межмолекулярных связей, но трёхмерная сетчатая структура не образуется. После охлаждения полимер остается в вязкотекучем состоянии.

Третий интервал – область температур 80 - 160(С. В этом интервале

соотношение внутри- и межмолекулярных связей смещено в сторону межмолекулярных, и процесс агрегации заканчивается образованием пространственной сетчатой структуры. После охлаждения до комнатной температуры полимер сохраняет сетчатую структуру; модуль упругости его возрастает, что указывает на образование в процессе охлаждения дополнительных физических узлов за счет межмолекулярных связей между карбоксильными группами.

Четвертый интервал – область выше 160(С. В этом интервале наиболее полно реализуются процессы диссоциации как исходных внутримолекулярных, так и образовавшихся межмолекулярных связей между карбоксильными группами.

Таким образом, карбоксилсодержащие полидиметилсилоксаны представляют собой материалы, в которых в наиболее яркой форме проявляется влияние специфических взаимодействий, на структуру и свойства полимера. Наличие полярных карбоксильных групп приводит к возникновению внутри- и межмолекулярных водородных связей. Вследствие термолабильности водородных связей и большой гибкости слабовзаимодействующих силоксановых цепей в этих полимерах при повышении температуры наблюдается необычный характер формирования пространственной сетчатой структуры, связанный с реорганизацией внутримолекулярных водородных связей в межмолекулярные.

Высокий модуль упругости обратимой физической сетки силоксановых эластомеров, его стабильность во времени, возможность направленного регулирования упругих свойств сетки путем термообработки и управления процессом обратимости сетчатой структуры открывает новые области применения этих материалов в качестве легко удаляющихся покрытий, связующих, герметиков и пленок.

Глава 4

Иономеры на основе карбоксилсодержащего полидиметилсилоксана.

Другим типом полимеров, в которых межмолекулярные связи физической природы кардинально меняют многие свойства, являются ион - содержащие

полимеры (иономеры и полиэлектролиты).

К иономерам относят полимеры с основной неполярной (или слабополярной) цепью и небольшим количеством (менее 15 мол.%) ионных групп, расположенных вдоль или на концах цепи. Введение даже небольшого количества ионных групп приводит к существенному изменению физических свойств полимеров (вязкости, температуры стеклования, механических и вязкоупругих характеристик).

Исследованы реологические и механические свойства Li, Zn, и Ni - содержащих иономеров с концевыми (телехелевые) и статистически расположенными вдоль полимерной цепи боковыми ионными группами (статистические иономеры).

загрузка...