Интеркалаты оксидов ванадия и нанотубулены на их основе: синтез, строение, свойства (01.06.2007)
Автор: Захарова Галина Степановна
В случае композитов V2O5(nH2O/ПКХ или ГХН внешний диаметр НТ равен 40 – 140 нм и 50 – 110 нм соответственно (рис. 19 и 20). Состав НТ описывается как VO2.35(C6H4)y, где y = 0.35 и 0.11 для ПКХ и ГХН соответственно. Расстояние между слоями d00l ( 13.85 ± 0.05 A и параметр структуры слоев a = 6.0 и 6.2 A соответственно. РЭС синтезированных тубуленов подобны и свидетельствуют о содержании в образцах пяти- и четырехвалентного ванадия. Электропроводность таблетированных порошков тубуленов имеет полупроводниковый характер (рис. 21). Структурные особенности хиноидного ядра орто-хинона способствуют существенному образованию углеродных структур, в том числе и НТ, при окислении ПКХ кислородом оксида ванадия (V). Методом энергодисперсионного микроанализа (рис. 22, 23) изучено распределение элементов по сечению нанотрубки VO2.35(C6H4)0.11. Установлено, что они состоят из семи ванадий-кислородных слоев и имеют канал. Процесс образования ванадий-оксидной наноструктуры с использованием в качестве темплата ГХН может быть описан реакцией (14): H2V12O31 + 3(HO-C6H4-OH) = C6H4(V85+V44+O28(OH)2) + 3H2O + 2C6H4O2 (14) О правомерности данной реакции свидетельствует состав нанотрубок, вычисленный по результатам РЭС. Для синтеза наноразмерных структур сложных оксидов ванадия были использованы соответствующие гели и ксерогели. НТ состава V0.78Мо0.22O2.49(С2Н3)0.46 синтезированы из композита гель V1.67Мо0.33O5.16·nH2О/ПВС (рис. 24). Образец состоял из пучков и одиночных нанотрубок с внешним диаметром 10 – 20 нм и длиною несколько мкм. Межслоевое расстояние составляет 13.75 ± 0.05 A и параметр структуры V-O-Mo слоев a = 6.23 ± 0.04 A. По данным РЭС они содержат V5+, V4+, Mo6+. Энергия связи для Mo3d-полосы равна 231.3 эВ. При нагревании образцов на воздухе при 1750С фиксируется эндоэффект выделения газовой фазы, которое заканчивается при 2800С. Наностержни состава V0.95Ti0.05O2.33(C6H4)0.12 синтезированы из прекурсора V1.67Ti0.33O4.84(nH2O/ГХН (рис.25). Внешний диаметр полученных структур 20 – 40 нм, длина 150 – 300 нм, расстояние между V-O слоями ( 13.85 ± 0.05 A. Параметр структуры V-O-Ti слоев – a = 6.20 A. По данным РЭС они содержат V5+, V4+ и Ti4+. Энергии связи для V2p3/2 полосы V5+ и V4+ равны 517.1 и 516.0 эВ соответственно, Ti2p3/2 – 458 эВ и O1s структурного кислорода – 529.9 эВ. Изучены электропроводность и ИК спектры наноструктур. Нагревание порошка НТ на воздухе сопровождается выделением сорбированных газовых составляющих воздуха. Далее следует окисление органической компоненты и восстановление ванадия с максимумом экзоэффекта при 2900С. Процесс заканчивается окислением продуктов термолиза при 4750С. Полученные в настоящей работе результаты позволяют предложить следующую модель формирования тубулярных структур простых и сложных оксидов ванадия (рис.26). Образованию трубок способствует увеличение межслоевого расстояния в структуре гелей (ксерогелей) при внедрении гидроксилсодержащих органических соединений. При этом взаимодействие между V-O слоями уменьшается. Гель V2O5·nH2O (0.1 М по ванадию) относится к классу кислот (рН = 2.3 – 2.4) и взаимодействует с гидроксилсодержащими органическими соединениями по гидролитическому механизму с увеличением рН до 3.6 – 3.8. В дальнейшем часть органической компоненты восстанавливает ванадий до четырехвалентного состояния, без которого тубулены оксида ванадия не образуются. Фактором скручивания V-O слоев может служить анизотропное распределение ионов ванадия различной валентности и размера, приводящее к скручиванию V-O слоев. Например, увеличение количества больших по размеру атомов V4+ в одной плоскости слоев приведет к увеличению размера этой поверхности и изгибу V-O плоскости. Начало скручивания V-O слоев приведет к перераспределению зарядов, образованию и стабилизации НТ. При таком механизме формирования трубок наиболее эффективными прекурсорами могут быть ксерогели оксида ванадия. Замена протонов ксерогеля на несущий положительный заряд радикал органической компоненты ослабит взаимодействие V-O слоев. Избыток гидроксилсодержащих органических соединений восстановит поверхностные слои ксерогеля. Это приведет к эффективному скручиванию V-O слоев и формированию тубуленов. Таблица 6 Морфологические характеристики ванадий-оксидных наноструктур Темплат Состав наноматериала D d00l, A этанол VO2.45(C2H5)0.30 1.5 - 2 мкм 14.3 ПВС VO2.35(C2H3)0.28 30 - 150 нм 13.9 ГХН VO2.35(C6H4)0.11 50 - 110 нм 14.1 ПКХ VO2.35(C6H4)0.35 40 - 140 нм 13.9 ПВС V0.78Mo0.22O2.49(C2H3)0.46 10 – 20 нм 13.8 ГХН V0.95Ti0.05O2.33(C6H4)0.12 20 – 40 нм 13.9 В табл. 6 суммированы результаты по синтезу ванадий-оксидных наноструктур, позволяющие сделать следующие выводы: - образование наноструктур идет по гидролитическому механизму; - диаметр наноструктур зависит от концентрации ионов (V4+, Mo6+, Ti4+), размер которых больше V5+; - тип темплата влияет на величину межслоевого расстояния. Таким образом, в результате проведенных исследований получено два типа наноразмерных структур оксида ванадия: в виде нанотрубок и наностержней. Электронно-микроскопические изображения высокого разрешения этих структур приведены на рис. 27 и 28. 7. Материаловедческая значимость полученных соединений. Результаты фундаментальных исследований интеркаляционных соединений простых и сложных оксидов ванадия, полученных в виде ксерогелей, свидетельствуют о том, что они устойчивы при нормальных условиях и могут быть использованы в качестве новых материалов для решения практических задач. Простота получения их в виде пленок, высокодисперсных порошков и нанокомпозитов с низкими энергетическими затратами позволяет занять им одно из ведущих мест в технологиях и материалах будущего. Основные работы в этом направлении рассмотрены в настоящей главе. напряжение батареи равнялось 26(28 В, а удельная энергия - 75(80 Вт(ч/кг. Пленки ксерогелей поливанадиевой кислоты Н2V12O30.7(nH2O с большим содержанием четырехвалентного ванадия могут быть использованы в качестве материала переключающего устройства. Переключение возникает в результате электрической формовки образца и соответствует резкому переходу от низко- к высокопроводящему состоянию (рис. 29). Ксерогели поливанадатомолибдатов (вольфраматов) представляют интерес как твердые электролиты с проводимостью по катиону Li+ для низкотемпературных электрохимических устройств и электрохромные материалы, изменение цвета которых происходит в результате интеркаляции – деинтеркаляции протонов или ионов лития. Сенсорные материалы. Ксерогели составов М2(V12-yMoyO31±()3(nH2O, где 0.5 ( y ( 3; 0.3 ( ( ( 1.0, предложено использовать в качестве ионочувствительных материалов электродов прямого потенциометрического определения концентрации трехвалентного катиона в растворах. Интервал их работы изменяется от 1 до 10-3 ( 10-5 М. Электроды умеренно селективны к двухвалентным ионам. Ксерогели M2V12-yTyO31±((nH2O, где M = H или Li, T = Mo, W, Cr, в виде пленок были апробированы в качестве внутреннего твердого контакта стеклянного электрода для определения рН растворов. Твердый контакт изготовляли в виде пленки ксерогеля или композита ксерогеля с глицерином. Они обладают широким диапазоном работы от рН=1 до рН=14, большой стабильностью потенциала (± 1 мВ) и имеют электросопротивление 40 – 1000 МОм. Зависимость электропроводности ксерогелей (NH4)2-xHxV12-yMoyO31(((nH2O от давления паров воды использована для разработки пленочных резистивных датчиков влажности воздуха. В качестве подложки для влагочувствительной пленки использовали стандартные резисторы типа МЛТ. Используя резисторы с различным электросопротивлением можно получать датчики влажности с различной чувствительностью. Время установления равновесного состояния при измерениях составляет менее 30 сек. Пленки состава H2V12O31-((nH2O проявляют сенсорные свойства по отношению к парам этанола. При температуре 1800С они не реагирует на содержание в воздухе до 1000 ppm NH3, H2, CO, CH3COCH3, паров воды. Катализ. Поливанадаты могут быть использованы в индивидуальном виде или иммобилизованными на анионите АВ-17 как катализаторы реакции окисления метилфенолов до метилбензохинонов. Степень превращения исходного сырья и селективность по хинону достигают 100%. Ксерогели H2V12-yMoyO31(((nH2O, нанесенные на (-Al2O3 с последующим прокаливанием при 5500С, проявили высокую каталитическую активность в реакции парофазного окисления этиленгликоля кислородом воздуха. Конверсия этиленгликоля увеличивается с ростом температуры процесса и уменьшается при повышении содержания молибдена и введении щелочного элемента в катализатор. Смешанные оксиды состава V2-yCryO5+((nH2O (0 < y ( 1.3), нанесенные на (-Al2O3, обладают каталитической активностью в процессе восстановления оксидов азота аммиаком. Эти катализаторы позволяют достигать степень восстановления оксидов более 90% в интервале 280 - 3300С при высоких промышленных скоростях газов (10000 - 30000 ч-1). Поливанадаты M2V12O31(nH2O (M = Na, K) являются эффективными катализаторами окисления порошка алюминия. Степень окисления алюминия равная 90% с добавкой поливанадатов достигается при температуре 10000С, а без добавки – при 15000С. Основные выводы. Оригинальным золь-гель методом синтезирован новый класс интеркаляционных соединений на основе гидратированных сложных оксидов ванадия общей формулы MxV12-yTyO31±((nH2O, где (T = Mo, W, Cr, Ti; M = H, Li, Na, K, Rb, Cs, NH4, Mg, Ca, Sr, Ba, Cu, Ce, Pb), в виде порошков и пленок. Определены области гомогенности по катиону внедрения М, молибдену, вольфраму, хрому, титану, кислороду и структурные параметры соединений. Установлено стабилизирующее действие ионов молибдена на структуру ксерогелей H2V12O31-((nH2O за счет увеличения концентрации четырехвалентного ванадия и ОН-групп. Полученные соединения отнесены к классу поливанадатов переменного состава. Показано, что пленки ксерогелей поливанадатов имеют 2D-мерный слоистый тип структуры, межслоевое расстояние в которых пропорционально размеру гидратированных ионов Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+ и безводных Rb+, Cs+. Замещение ванадия на молибден, вольфрам, хром или титан сопровождается уменьшением межслоевого параметра d00l и увеличением термической стабильности соединений. Предложена модель структуры пленок ксерогелей. Установлено распределение четырехвалентного ванадия в структуре ксерогеля поливанадиевой кислоты H2V12O31-((nH2O, который первоначально локализуется в ванадий-кислородных слоях, а при (>0.5 начинает переходить в межслоевое пространство в виде ванадил ионов. Катионы щелочных и щелочноземельных металлов препятствуют этому процессу и весь V4+ в этих соединениях находится в ванадий-кислородных слоях. Увеличение концентрации четырехвалентного ванадия в образцах приводит к расширению межслоевого расстояния в поливанадиевой кислоте и не влияет на параметр d00l поливанадатов щелочных и щелочноземельных металлов. Определено валентное состояние атомов интеркалатов. Определены температурные зависимости парциальных термодинамических характеристик воды, водорода и лития интеркаляционных соединений общей формулы MxV12-yTyO31(((nH2O (T = Mo, W, Ti; M = H, Li, Na, K, Rb, Cs, NH4, Mg, Ca, Sr, Ba) от степени замещения ванадия на молибден, вольфрам, титан. Установлено, что наибольшей термодинамической устойчивостью обладают составы при y=2, что связано с возможным упорядочением катионов внедрения и атомов Т в структуре слоев интеркалатов. Для ксерогелей (NH4)2-xHxV9Mo3O31+((nH2O вблизи составов x=0.75 и 1.5 величины ((H(H2) и ((S(H2) экстремальны, что связано с образованием частично упорядоченных структур в единой системе водородсодержащих группировок (NH4+, H3O+, H2O). Установлено, что электросопротивление тонкопленочных и объемных образцов ксерогелей поливанадатов M2V12-yTyO31(((nH2O увеличивается на 2-3 порядка в интервале температур 35 – 900С в зависимости от состава фаз. Концентрация носителей заряда для всех образцов практически одинакова и равна (1.2 ( 0.8)1025 м(3. Электропроводность определяется в основном подвижностью носителей заряда, которая параллельно V-O-T слоям на 4 порядка больше, чем в перпендикулярном направлении и зависит от содержания воды в соединениях. Большая протонная проводимость (2.6(10(2 См/м при 298К) обнаружена при замещении ионов водорода на NH4+ в соединении H2V9Mo3O31+((nH2O, что связано с высокой вращательной подвижностью катионов NH4+ и единой системой водородсодержащих групп. Впервые в гидротермальных условиях из композитов гель (ксерогель) V2-xТxO5±(·nH2O/этанол, поливиниловый спирт, пирокатехин, гидрохинон, где Т = Mo, Ti, получены новые нанотрубки простых и сложных оксидов ванадия. Определены морфология, структурные параметры, валентное состояние и энергии связи элементов, электропроводность и термические свойства этих веществ. Органическая компонента выполняет роль темплата и, раздвигая ванадий-кислородные слои, способствует образованию тубуленов. Они имеют следующие составы и размеры: VO2.35(C2H3)0.28 (D = 30 – 150 нм, L > 1 мкм); VO2.45(C2H5)0.14 (D = 1.5 – 2.0 мкм); VO2.35(C6H4)y, где y = 0.35 и 0.11 соответственно для пирокатехина и гидрохинона (D = 40 – 110 нм); V0.95Ti0.05O2.33(C6H4)0.12 (D = 20 – 40 нм); V0.78Mo0.22O2.49(C2H3)0.46 (D = 20 – 80 нм). По данным РЭС наноструктуры содержат V5+, V4+, Ti4+ (Mo6+). Энергии связи V2p3/2 полосы для тубуленов уменьшаются по сравнению с таковыми для исходных слоистых прекурсоров. Температурная зависимость электропроводности нанотрубок ( полупроводниковая и зависит от давления воздуха. Рассмотрен процесс образования интеркалатов и модель формирования нанотрубок. Результаты физико-химических исследований порошков, пленок и наноразмерных интеркалатов свидетельствуют о том, что они могут быть использованы как эффективные материалы в качестве: |